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INTRODUCTION

In recent years, our knowledge of human physiology and cell 
biology has increased exponentially. This significantly impacted 
the development of tissue engineering in various medical fields, 
including regenerative techniques for intervertebral disc (IVD) 
degeneration (IDD). Degenerative discs are among the main 
causes of chronic segmental spinal instability in both males and 
females, and significantly affect the quality of life, especially of 
young patients [1]. IDD may present clinically as axial back pain, 
spinal stenosis, myelopathy, or radiculopathy [2-4].

Low back pain is associated with IDD [5,6]. The disk height 
decreases due to degeneration, altering the mechanics of the 
affected spinal segment. This process accelerates the degener-
ation of adjacent segments and other spinal structures, such as 
small joints, ligaments and muscles [5]. In the long term, IDD 
leads to narrowing of the spinal canal (spinal stenosis) and the 
subsequent compression of neural tissue. Spinal stenosis is the 
major cause of pain, especially in the elderly. Considering cur-
rent demographic trends in Europe [7] such as the increase 

in the elderly population, the problem of IDD and related 
conditions becomes more difficult [8]. Current therapies for 
IDD include conservative and invasive treatments [6], how-
ever, none of those approaches can restore the disc structure 
and function [9,10]. Recently, tissue engineering techniques 
emerged as a possible approach to treat IDD, by replacing a 
damaged IVD with scaffolds and appropriate cells [9,11,12].

In this review, biomaterial scaffolds and cell-based thera-
pies for IVD regeneration are briefly discussed.

INTERVERTEBRAL DISC STRUCTURE

IDD and associated back pain are chronic conditions that 
affect a large number of people worldwide. Thus, prevention and 
treatment of disk degeneration are the focus of intensive research. 
Recent findings show the potential of biological methods, such as 
molecular, cell-based and whole organ tissue engineering thera-
pies, to prevent and manage IDD [13-15]. Because various scaffold 
materials and cell sources are used in tissue engineering, advances 
in materials science are particularly important for the develop-
ment of this field. These include improvements in manufacturing 
techniques, material processing and development, surface func-
tionalization, drug delivery systems and cell incorporation [16-19].

The IVD is complex in structure and consists of three 
distinct parts (Figure  1): 1) the fibrocartilaginous annulus 
fibrosus (AF) with its outer and inner regions, composed of 
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concentrically oriented layers of fibrous tissue; 2) the central 
nucleus pulposus (NP); and 3) the cartilaginous endplates 
(EPs) [9,20]. The AF consists of a series of 15 to 25 concentric 
rings or lamellae, with aligned parallel collagen fibers located 
within each lamella. Elastic fibers lie between the lamellae and 
help the IVD to return to its original shape following flexion 
or extension of the spine. The cells of the AF are elongated 
and fibroblast-like and are aligned parallel to the collagen 
fibers. The NP contains a highly hydrated gel-like matrix that 
is comprised primarily of the proteoglycan aggrecan. A small 
amount of randomly arranged collagen fibers and radially 
arranged elastin fibers are embedded in the matrix [20,21,22]. 
The cells in the NP are spheroidal and chondrocyte-like. The 
EPs are made up of osseous and hyaline-cartilaginous layers 
and contain rounded chondrocytes.

The IVD is an avascular structure. Both the cells and 
extracellular matrix (ECM) are essential for normal IVD func-
tion [4]. Regenerative approaches in tissue engineering of IVD 
aim to restore/preserve the anatomy and function of both AF 
and NP [23]. Therefore, an ideal scaffold for IVD replacement 
should have good biocompatibility and moderate porosity, 
and the shape, structure and mechanical properties similar to 
the IVD [9,24]. Currently, the research in this area is focused 
on constructing AF- and NP-scaffolds that have all the prop-
erties of the native structures, using various synthetic and nat-
ural polymers [12,25,26].

Main challenges in IVD tissue engineering

Mechanical properties of the IVD are important for its 
proper function. In vivo, the IVD transmits the load imposed 
on the spine, including spinal tension, torsion, compression 
and bending [27]. Thus, it is essential for tissue engineered 
scaffolds to have all the (bio)mechanical properties of the IVD 
so they can replace a damaged disc in the body [9].

Scaffolds represent one of the key components in tissue 
engineering, as they provide the structural support for cell 
attachment/proliferation and ECM accumulation [28]. Tissue 
engineered scaffolds should be able to withstand the physio-
logical load imposed on the IVD in vivo, in addition to good 
biocompatibility, moderate porosity and similarity to the IVD 
in shape, structure and mechanical properties [29]. Moreover, 
for cell/whole organ tissue engineering therapy to be success-
ful, the local environment in which transplanted cells or tissue 
engineered IVDs are introduced must be able to support cell 
growth and proliferation [9,26].

Scaffolds and appropriate source materials

Tissue engineering provides a promising alternative 
for the restoration of physiological function of a damaged 
IVD [30]. Because degeneration of the IVD affects both the 
AF and NP, composite scaffolds that enable simultaneous 
repair of the two parts should be used [30]. Studies with small 

FIGURE 1. Schematic depiction of the normal and degenerate IVD structure with possible therapeutic approaches. A) Nutrient path-
ways in normal disc. B) Nutrient pathways in a degenerate disc (e.g., calcification of cartilaginous endplate, occlusion of marrow spaces, 
atherosclerosis of vertebral arteries, reduced capillary density etc.). C) Different forms of biological therapies for disc repair. D) Current 
therapies increase the cell number and/or cellular activity causing nutrient demand to exceed nutrient supply, which is already dimin-
ished in degenerate discs. Reprinted by permission from Macmillan Publishers Ltd: Nature Reviews Rheumatology [20], copyright 2014.
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animal models showed promising results in IVD regeneration 
and repair. Various techniques are utilized for the preparation 
of three-dimensional (3D) biomimetic scaffolds, including 
solvent casting, leaching method, phase separation, freeze 
drying, and electrospinning [11,31,32]. However, clinical appli-
cation of these scaffolds is still limited [33]. Collagen, which 
is the most abundant protein in mammals, is widely used in 
biomedical applications and may also be appropriate for IVD 
regeneration [34,35]. In the extraction of collagen from skin 
tissue, pepsin is added to remove N- and C-terminal telopep-
tide components from collagen and to solubilize the collagen 
derivative [36]. This low-immunogenic derivative of collagen 
is called atelocollagen. Due to its low antigenicity, atelocolla-
gen is regarded as one of the best basic matrices for implant-
able materials [37]. An atelocollagen scaffold with honeycomb 
structure is mechanically stable, easily handled, and supports 
the growth of a large number of cells (high-density cell cul-
tures). Considering these characteristics, atelocollagen may be 
useful as a 3D scaffold in tissue engineering [38].

Another important material for scaffold construction is 
silk fibroin, a protein produced by silkworms and some other 
insects [39]. Silk has a high resistance to compression and is 
considered to be one of the strongest natural fibers [31,40]. The 
stability of the silk fibers is the result of the extensive hydrogen 
bonding, hydrophobic nature of the protein, and high degree 
of crystallinity due to the specific organization of β-sheets [41]. 
There are several benefits of using silk fibroin as a scaffold in 
IVD bioengineering [42]. Mechanical stability is an important 
property of a scaffold, and in the case of silk scaffolds, it is the 
result of compressive and tensile strength of silk protein fibers. 
In vivo, IVDs are always to some degree under load [24]. Once 
implanted, the silk scaffold would degrade at a sufficiently 
slow rate to allow proper tissue development [39,43]. Another 
benefit of silk is that other peptides can be covalently attached 
to it, which could potentially enhance cell attachment during 
AF and NP development [44].

Other biomaterials that may be used as matrix support-
ing materials in AF and NP tissue engineering include chi-
tosan and alginate, and both are cheap and easily accessible. 
Moreover, the two polymers yield superior characteristics 
when combined into a hybrid scaffold [7,45]. Chitosan is 
derived from the shells of crustaceans [46]. It is a biodegrad-
able and biocompatible polymer with low toxicity and good 
antimicrobial properties [47,48]. Chitosan-based scaffolds are 
soft and spongy, have high porosity and pore interconnectivity, 
and support cell adhesion and growth [46]. Alginate is a linear 
polysaccharide composed of α-L-guluronic acid (G block) and 
β-D-mannuronic acid (M block) residues, which are linked 
together in different sequences. It represents one of the most 
abundant natural materials and is derived primarily from 
brown algae and some bacteria [49]. Due to its outstanding 

properties in terms of biocompatibility, biodegradability, 
non-antigenicity and chelating ability, alginate is used in a vari-
ety of biomedical applications, including tissue engineering 
(e.g., as a supporting matrix) and drug delivery [45,49-52].

Gellan gum (GG) is a natural polysaccharide produced by 
the bacterium Sphingomonas elodea [53]. It consists of repeat-
ing tetrasaccharide units that are comprised of L-rhamnose, 
D-glucuronic acid and two D-glucose residues. GG is noncy-
totoxic and particularly resistant to heat and acid stress [54]. 
The gelation of this biomaterial leads to the formation of a sta-
ble hydrogel structure. At higher temperatures (above ~80 °C), 
GG exists in a coil conformation. As temperature decreases, a 
thermoreversible coil to helix transition occurs [55]. Untwined 
regions of polysaccharide chains link to the oriented bundles 
of the double helix structures (junction zones) leading to the 
formation of a 3D gel network, which can be used as a matrix 
for cell seeding [55,56].

In addition to natural polymers and natural-polymer 
derived materials, biodegradable synthetic polymers are also 
utilized as scaffolds in tissue engineering [57,58]. Synthetic 
polymers have a number of advantages over natural poly-
mers, including highly reproducible synthesis, predictable 
properties, lack of immunogenicity, and easy processing into 
desired structures and implants [58]. Synthetic polyesters 
that are extensively used in AF tissue regeneration include 
poly(ε-caprolactone) [PCL], polylactide (PLA), polyglycolide 
(PGA), and copolymers produced from the respective mono-
mers [26,59]. In addition, many other natural and synthetic 
materials are being investigated as scaffolds for AF, NP and 
IVD tissue engineering [60].

Tissue engineering of AF and NP

Tissue engineered AF and NP have the potential to repair 
or replace degenerated tissue in the IVD, thus restoring its 
functionality. Therefore, considerable research is directed 
toward developing appropriate scaffolds for AF and NP regen-
eration [15,42,61]. Many natural and synthetic materials can be 
used as a supporting matrix in AF and NP scaffolds [25].

Damage to the AF is attributed to numerous factors, such 
as mechanical stress, biological remodeling, loss of nutrition of 
cells, and accumulation of cellular waste products [27,42,62]. 
Silk scaffolds are appropriate for AF engineering due to their 
mechanical properties and biocompatibility. According to 
Chang et al. [44], porous silk scaffolds may be used to mod-
ulate the phenotype of seeded AF cells, mimicking the native 
tissue with inner transition and outer zones [44]. AF scaffolds 
can also be produced from alginate or alginate/chitosan [15,51]. 
A hybrid alginate/chitosan scaffold has good biocompatibility, 
promotes AF cell proliferation, supports ECM deposition, 
and has a slower degradation rate compared to a pure alginate 
scaffold [51]. The atelocollagen honeycomb-shaped scaffolds, 
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which allow high-density growth and 3D culture of various 
cells, may be used for IVD regeneration by transplanting the 
AF cells [37,51]. In addition, Cabraja et al. showed that a 3D 
polymer of pure polyglycolic acid (PGA) combined with hyal-
uronan is an excellent scaffold for AF cell redifferentiation [63].

Similar to AF tissue engineering, different types of materi-
als are used for NP scaffolds, such as collagen, alginate, chitosan, 
fibrin and hyaluronic acid [24]. Hydrogels for NP engineer-
ing should possess good mechanical strength, viscoelasticity, 
swelling capacity, diffusion properties, biocompatibility, and to 
be able to support cell growth and ECM accumulation [64]. 
Generally, the main challenge in NP tissue engineering is to 
find a biomaterial that can withstand large mechanical loads, 
imposed on the spine in natural conditions [15]. There are two 
different cell types in the NP: notochordal cells and mature NP 

cells. The latter are called chondrocyte-like cells due to their 
rounded shape and secretory activity, and are found primar-
ily in adults [65]. An example of a scaffold appropriate for NP 
tissue engineering is a chitosan-based hydrogel seeded with 
IVD cells [15,66]. This scaffold is suitable for cell-based supple-
mentation, to restore NP function in the early stages of IVD 
degeneration [66]. Halloran et  al. showed that an enzymati-
cally cross-linked atelocollagen type  II-based scaffold, con-
taining aggrecan and hyaluronan in varying concentrations, 
has the potential for developing an injectable scaffold seeded 
with cells for NP regeneration [67]. Moreover, modification 
of low viscosity alginate with methacrylate groups produces 
a photo-crosslinkable alginate hydrogel with tunable mate-
rial properties and the ability to maintain the viability of the 
encapsulated NP cells [50]. Similarly, porous silk fibroin (SF) 

FIGURE 2. Overview of recent strategies related to intervertebral disc regeneration. Reprinted by permission from Elsevier: Biotechnology 
Advances [94], copyright 2013.
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scaffolds represent a plausible candidate for tissue engineered 
NP as they support NP cell attachment, proliferation and infil-
tration, and the production of ECM [40]. Other scaffolds for 
NP regeneration include ionic- and photo-crosslinked meth-
acrylated gellan gum hydrogels, which can be used as acellu-
lar or cellular tissue engineering scaffolds; polylactide beads; 
demineralized bone matrix; gelatin microcarriers; gelatin/
chondroitin-6-sulfate/hyaluronan tri-copolymers, which are 
bioactive scaffolds for culturing human NP cells that preserve 
cell viability and support cell proliferation and ECM produc-
tion; and biphasic polyurethane scaffolds, which have good 
swelling capacity in vitro, fast swelling rate after hydration, and 
dynamic compressive stiffness [15,37,40,50,64,66,67].

Final task: cell integration

For a complete and functional tissue-engineered model of 
IVD, which includes the cells and ECM, a scaffold needs be 
able to support the survival and preserve/induce the pheno-
type of both AF and NP cells. Various cell types are used for 
regenerative therapy of IDD, and stem cells represent a par-
ticularly attractive option [68]. As unspecialized cells capable 
of long-term self-renewal and lineage-specific differentiation, 
stem cells can be programmed/induced to differentiate into dif-
ferent types of cells [68-70]. Mesenchymal stem cells (MSCs) 
are particularly suitable for IVD cell therapy, because they are 
capable of differentiation into various connective tissue cells 
and can be obtained relatively easily from a number of sources, 
including fetal liver, umbilical cord blood, bone marrow, adi-
pose tissue, muscles and dermis [70-81]. MSCs participate in 
the repair of degenerated disc tissue in several ways, includ-
ing: 1) directly by differentiation into disc tissue-specific cells 
to supply lost or damaged cells and promote the formation of 
the ECM; 2) indirectly by secreting growth factors to enhance 
tissue regeneration; and 3) by modulating the inflammatory 
response [82-86]. Two main therapeutic strategies exists for the 
application of MSCs in tissue repair. In the first approach, undif-
ferentiated MSCs are transplanted, which then undergo differ-
entiation in  vivo under the stimulation of local factors. In the 
second strategy, MSC are induced to differentiate in vitro, prior 
to transplantation [86]. A  number of studies investigated the 
ability of MSCs to differentiate into NP or AF cells and promote 
ECM synthesis, using either co-culture systems with growth 
factors or animal models in which MSCs are injected directly 
into the IVD [62,87-92]. When injected directly into the IVD 
MSCs promote ECM synthesis, resulting in restoration of the 
disc height. Human cell cultures are also used for IVD regener-
ation. Transplantation of autologous MSCs from bone marrow 
into a rabbit model of disc degeneration leads to regeneration of 
IVDs, providing a new hope for the treatment of degenerative 
disc disease in humans [93,94]. Figure 2 summarizes the most 
important recent strategies for IVD regeneration.

CONCLUSION

The pathophysiology of IVD disease is still not well under-
stood and IDD remains a significant health problem world-
wide. Although still in the experimental phase, regenerative 
strategies for IDD such as tissue engineering show great 
promise. Further research will provide new insights into IVD 
regeneration mechanisms and, hopefully, enable the integra-
tion of regenerative therapies for IDD into clinical practice.
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