The Bosnian Journal of Basic Medical Sciences publishes an “Advanced online” manuscript format as a free service to authors in order to expedite the dissemination of scientific findings to the research community as soon as possible after acceptance following peer review and corresponding modification (where appropriate). An “Advanced online” manuscript is published online prior to copyediting, formatting for publication and author proofing, but is nonetheless, fully citable through its Digital Object Identifier (doi®). Nevertheless, this “Advanced online” version is NOT the final version of the manuscript. When the final version of this paper is published within a definitive issue of the journal with copyediting, full pagination, etc. the new final version will be accessible through the same doi and this "Advanced online" version of the paper will disappear.

REVIEW ARTICLE

Hanan Polansky and Hava Schwab: Cause of breast cancer

How latent viruses cause breast cancer: An explanation based on the microcompetition model

Hanan Polansky*, Hava Schwab

The Center for the Biology of Chronic Disease (CBCD), New York, NY, USA

*Corresponding author: Hanan Polansky, The Center for the Biology of Chronic Disease (CBCD), 616 Corporate Way, Suite 2-3665, Valley Cottage, NY 10989, USA. Phone: 607-256-6070. E-mail: hpolansky@cbcd.net

Submitted: 25 October 2018/Accepted: 11 December 2018

DOI: http://dx.doi.org/10.17305/bjbms.2018.3950

Licence: © 2018 ABMSFBIH.
ABSTRACT

Most breast cancer cases show a decrease in the concentration of the breast cancer type 1 susceptibility protein (BRCA1). However, only a small portion of these cases have a mutated BRCA1 gene. Although many attempts have been made to identify the reason for the decrease in BRCA1 expression in sporadic, non-heritable breast cancer cases, the cause is still unknown. In this review, we use the Microcompetition Model to explain how certain latent viruses, which are frequently detected in breast cancer tumors, can decrease the expression of the BRCA1 gene and cause the development of breast tumors.

KEY WORDS: Breast cancer; microcompetition; GABP; p300/CBP; HPV; EBV; latent viruses; BRCA1; BRCA1 mutation
INTRODUCTION

Most breast cancer cases show low concentrations of the BRCA1 protein [1, 2]. Surprisingly, only a small number of these patients have a mutated BRCA1 gene [3]. Studies estimated that BRCA1 and BRCA2 mutations account for less than 5% of all breast cancer cases, and less than 25% of familial breast cancer patients [4, 5]. These low numbers are consistent across the globe. For instance, an American study showed that only 3.3% of the women diagnosed with breast cancer had a mutation in their BRCA1 gene [6]. A British study showed that only 3% of the studied breast cancer patients had mutated BRCA1/2 genes [7]. A genetic study, done on 204 North Indian breast cancer patients, showed that only 6, or 2.9% of the patients, had a BRCA1/2 mutation [8]. Similar low numbers have been shown in a Chinese study that identified a mutation in the BRCA1/2 genes in only 7 out of 645 (1.1%) of the women with breast cancer [9].

Although, the cause for the decrease in BRCA1 gene expression in the majority of the non-heritable, or sporadic breast cancer cases is of great interest to the scientific and medical community, the reason is still unknown [3]. In this paper, we use the Microcompetition Model to show how certain latent viruses, which are frequently detected in breast cancer tumors, can decrease the expression of the BRCA1 gene, and cause the development of breast tumors.

BRCA1 protein function

BRCA1 functions as a tumor suppressor protein through various mechanisms. One of BRCA1’s methods of suppressing tumors is via repairing double stranded DNA breaks [1]. Another method is by regulating cell cycle checkpoints and centrosome duplication during the cell’s replication. Also, BRCA1 has been known to interact with RNA Polymerase II to modulate the transcription of several genes, including genes that are responsible for nucleotide excision repair
These repair mechanisms show the importance of the BRCA1 protein in preventing genome instability.

BRCA1 and breast cancer

Breast cancer is the most common cancer among women, affecting one in ten women during their lifetime [1]. Many risk factors exist for breast cancer, with the most important one being a family history of the disease. Although this is the strongest risk factor, only a small proportion of breast cancer, 5-10%, has a hereditary cause. Even within this 5-10%, only 4-5% of breast cancer cases are due to the heritability of mutations of the high penetrance genes, such as *BRCA1* or *BRCA2* [1]. Non-heritable, or sporadic breast cancer, accounts for 90-95% of breast cancer cases. In sporadic breast cancer, there is no mutation in the *BRCA1* gene. Yet, most show absent or reduced levels of the BRCA1 protein [1]. Thus, the question arises of what could be causing the decrease in BRCA1 protein levels in these breast cancer cases.

One possible reason for the cause of decreased BRCA1 expression is hypermethylation of the *BRCA1* promoter in breast cancers. Methylation has been shown to play an important role in tumorigenesis, particularly in the promoter regions of tumor suppressor and DNA repair genes [10]. Although methylation is important in tumor formation, in a study on 193 primary breast carcinoma tissue samples, only 13% were shown to have hypermethylation in the *BRCA1* promoter region [11]. The results of this study indicate that hypermethylation of the *BRCA1* promoter decreases the expression of the *BRCA1* gene in only a minority of cases.

BRCA1 gene and GABP transcription factor

GA binding protein (GABP) is a transcription factor composed of two subunits, GABPα and GABPβ [12]. GABP binds the cis-regulatory element called the N-box. GABP is responsible
for the regulation of a variety of cellular genes related to growth, respiration, and cell differentiation [12].

Several studies showed that GABP transactivates the \textit{BRCA1} gene. A study published by Atlas, et al. in 2000 [13] identified a 22 base pair conserved region on the \textit{BRCA1} promoter, called the EcoRI Bandshift (RIBS) element. The study showed that the GABP\(\alpha/\beta\) transcription complex binds this element and transactivates the \textit{BRCA1} gene. Then, a study by MacDonald et al., published in 2007, discovered that another element, called the UP element, also binds the GABP\(\alpha/\beta\) complex. The study showed that “in isolation both the RIBS and UP elements act as GABP\(\alpha/\beta\) dependent activator elements [14].”

Then, a paper by Antonova and Mueller [15], published in 2008, showed that the stress hormone hydrocortisone (cortisol) decreased the expression of \textit{BRCA1} gene in the nonmalignant mouse mammary cell line EPH4. Then the study showed that the effect of hydrocortisone is mediated though a decrease in the binding of GABP to the RIBS and UP regulatory elements.

In 2011, Thompson et al. [16] showed that a decrease in the activity of GABP caused a decrease in the expression of \textit{BRCA1} in the SK-BR-3 cell line. First, Thompson et al. used western blot analysis to confirm that SK-BR-3 cells have low levels of \textit{BRCA1} protein. Then they investigated the cause of the low \textit{BRCA1} protein levels by looking at the level of the \textit{BRCA1} proximal promoter expression in SK-BR-3 cells compared to MCF-7 cells. They used ChIP (chromatin immunoprecipitation), and observed that the \textit{BRCA1} promoter is not occupied by RNA polymerase II in the SK-BR-3 cells, suggesting a lack of transcription in this cell line. Then, they used a short hairpin RNA (shRNA) directed against the alpha subunit of GABP, and observed a great reduction in the promoter activity in MCF-7 cells. Finally, they cotransfected GABP expression vectors in SK-BR-3 cells, and observed a large increase in the transcription of
the promoter. These results indicate that there is a link between the low levels of GABP in the SK-BR-3 cell line, relative to MCF-7 and T-47D cell lines, and the low levels of BRCA1 expression in this cell line.

In 2012, Ritter et al. showed that, in breast cells, in the absence of hydrocortisone, the glucocorticoid receptor (GR) interacts with GABPβ at the RIBS element of the BRCA1 promoter, and activates transcription of the BRCA1 gene [12].

To summarize, these studies showed that GABP binds to the BRCA1 promoter and transactivates the gene.

Oncoviruses and breast cancer

Many studies observed a link between certain viruses and breast cancer in humans. One of these viruses is the mouse mammary tumor virus (MMTV), a beta retrovirus, and a known cause of mammary tumors in mice [17]. MMTV-like retroviral particles were found in breast cancer biopsies, and MMTV proteins were detected in breast tumors using anti-MMTV antisera and MMTV reactive antibodies [17]. One study screened DNA samples of 80 Pakistani breast cancer patients for MMTV gene sequences, and found that up to 26% of the samples were positive for the presence of the MMTV envelope and long terminal repeat (LTR) sequences [17]. This study showed a possible association between breast cancer and MMTV.

Studies also found the human papillomaviruses (HPV) and the Epstein-Barr virus (EBV) in breast tumors [18-21].

A systematic review and meta-analysis of 29 studies that included 2,211 breast tissue samples from across the globe found that 23% of breast cancer patients had HPV DNA compared to 12.9% in controls. [20]. Also, the researchers pooled the data of nine case control studies and calculated an odds ratio of 5.9, indicating that HPV positive women are 5.9 times more likely to
have breast cancer [20]. Furthermore, a case control study in northern Iran, with 130 individuals, used PCR analysis and detected HPV DNA in 25.9% of breast cancer patients tumors compared to 2.4% in non-cancer patients breast tissue, where most of the HPV types detected were the “high risk” HPV subtypes, such as HPV-16 and 18 [21]. The high prevalence of HPV-positive DNA in breast cancer patients suggests a possible link between HPV and breast cancer. Furthermore, it has been shown that the E6 and E7 oncoproteins of HPV-16 and 18 directly interact with and inactivate BRCA1 it in breast cancer cells [22]. Studies also found EBV in breast cancer patients. One European study, which included 196 breast cancer specimens, found EBV DNA in 33.2% of the cases using real-time quantitative PCR (RT-PCR). Interestingly, the EBV-positive breast cancers tended to be tumors with a more aggressive phenotype. These EBV-positive tumors were also more frequently estrogen receptor negative, and had a higher histological grade [23]. A large meta-analysis of 24 studies, which included 1,535 cases from all over the world, found an EBV infection in 29.3% of the patients with breast cancer. Also, patients with a positive EBV status showed a significant increase in breast malignancy risk (OR=6.3) [24]. These studies provide evidence that EBV is statistically associated with an increased in breast cancer risk, especially some specific types of breast cancer, such as lobular breast carcinoma [24]. Viruses have not only been implicated in breast cancer, but they have been linked to several other types of cancers. Most famously, HPV is known to be a necessary factor for the development of cervical cancers [25]. Increasing evidence linking EBV and colorectal cancer (CRC) has emerged. In a study of 90 CRC specimens, EBV proteins were detected in nearly a third of the tissues, compared to a detection rate of only 4% in adjacent non-cancerous control specimens [26]. Another study used PCR and tissue microarray (TMA) analysis to show that
EBV was present in 36% of 102 CRC tissue samples, and EBV was also associated with a more aggressive type of CRC [27]. Recent research suggests that a coinfection of EBV and HPV may play an important role in the progression of cervical cancer [28]. The study found that EBV and high risk HPV were co-present in 34% of the 44 cervical cancer tissues sampled, and the cancers with both infections were likely to be more aggressive [28].

Viruses reduce available GABP via microcompetition

Many common viruses, which establish a latent infection, have a strong N-box in their promoters/enhancers. These viruses include EBV, cytomegalovirus (CMV), herpes simplex virus 1 (HSV-1), human immunodeficiency virus (HIV) and human T-cell lymphotropic virus (HTLV). The ICP4 promoter of HSV-1 contains an N-box sequence of ‘CGGAAR’ as a tandem repeat. Hagmann et al. analyzed GABPα/β expression in mammalian cell lines and neural tissues. They observed a ternary complex consisting of a single GABPα/β heterodimer on a single ‘CGGAAR’ site in the ICP4 promoter [29]. The CMV genome includes the Major Immediate Early Promoter (MIEP), which controls the Immediate Early 1 and 2 (IE1 and IE2) proteins [30]. This MIEP promoter contains an N-box [31]. Chan et al. report that the HCMV MIE region contains an SEE (SRF/ETS element) at -538 to -523 which includes the presence of an ETS class GABP binding site [32].

After establishing a latent infection, the viral N-boxes bind and sequester the cellular GABP•p300/CBP transcription complex. Since the p300/CBP coactivator is limiting [33-37], the complex is limiting. As a result, the sequestering of the complex by the viral promoter/enhancer decreases the binding of GABP•p300/CBP to cellular genes, specifically, the *BRCA1* gene. Since the complex transactivates the *BRCA1* gene, the decrease in binding of the complex decreases the expression of the gene. The decrease in BRCA1 protein levels increases
the infected cell proliferation, which leads to the development of breast cancer [2] (Figure 1). This explanation is based on the Microcompetition Model, first described in the book ‘Microcompetition with Foreign DNA and the Origin of Chronic Disease,’ and subsequent papers [38, 39].

Many of the viruses mentioned above are highly prevalent. For example, approximately 67% of the global population, or 3.7 billion people worldwide, are estimated to have HSV-1 [40]. The question is, why only a fraction of the people infected with these latent viruses develop breast cancer. The answer is, although the prevalence of these viruses are high, only a small portion of the infected individuals have a high enough copy number of the latent viruses. What increases the copy number? Many events can increase the copy number of the virus during the latent phase. For instance, aging [41], certain medications [42, 43], surgery [44-46], chemotherapy [47], radiation [48], and stress [49], can decrease the efficiency of the immune system and increase the copy number of the latent virus. Zuo et al. discusses the connection between the copy number of latent EBV and its effect on oncogenicity [50]. According to Zuo et al.: “It has been noticed that EBV load in tumor tissues or blood is associated with the clinical progression and prognosis in both lymphoma and [nasopharyngeal carcinoma] NPC. Our result verifies this association. We also emphasize the importance to measure the level of gene expression or copy number in the virus study instead of only concerning ‘with and without’.”
CONCLUSION

The Microcompetition Model shows how an increase in the copy number of the latent virus that infect breast cancer tissues increases the sequestering of the limiting GABP•CBP/p300 transcription complex. This disrupts the allocation of the transcription complex to cellular genes, specifically the tumor suppressor BRCA1, which decreases the levels of the BRCA1 protein, and causes the development of breast cancer.

DECLARATION OF INTERESTS

The authors declare no conflict of interests.
REFERENCES

FIGURE 1. The process by which external and internal events lead to breast cancer by way of GABP dysregulation at the BRCA1 promoter. External/internal events cause A. Increased latent virus copy number B. Decreased GABP•CBP/p300 binding at BRCA1 promoter C. Decreased BRCA1 gene expression and BRCA1 protein D. Development of breast cancer