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INTRODUCTION

Prostatic cancer is the most common malignancy in men 
and the second cause of cancer death in developed countries.

The prostatic gland is composed of two distinctive com-
partments: epithelial and stromal. They mutually interact via 
androgen receptors and this interplay is important for pros-
tate development and differentiation [1-3]. Analogously, pros-
tate cancer is composed of both malignant epithelial cells and 
supportive stroma whose transformation is important for the 
growth and development of the tumor. Cancerous stroma 
is composed of fibroblasts, myofibroblasts, endothelial cells 
and immune cells. Predominant cellular types are, however, 
fibroblasts or myofibroblasts, which play an important role 
in synthesis, deposition and remodeling of the extracellular 
matrix. Tumorous epithelial cells, in interaction with stromal 
cells, and with the help of various molecules of extracellular 

matrix (ECM) create a microenvironment suitable for cancer 
cell proliferation, movement, and differentiation [4-13].

Reactive stromal changes occurring in different 
human cancers might play a role in local tumor spread and 
progression. Studies on different human cancer specimens 
have demonstrated activated stromal cell phenotypes, mod-
ified ECM composition, and increased microvessel density. 
Furthermore, they exhibit biological markers consistent with 
stroma at the site of wound repair [1, 5, 7, 12,13].

Tumor cell populations have several important features: 
capacity for self-renewal, ability to survive under different 
stress conditions and potential to produce metastases, the 
latter resulting in increased cancer aggressiveness and wide-
spread dissemination. It appears that not only all the cells 
of tumor stroma, but also the other stromal components 
can potentially affect tumorigenesis. They play a key role in 
enhancement of tumor progression by stimulating angiogene-
sis and promoting cancer cell survival, proliferation, and inva-
sion. In epithelial-stromal transformation, a panel of highly 
motile, independent cells capable of invasion and metastasis 
is involved [5-15].

Presently, it is evident that both malignant transformation 
and tumor progression are not exclusively regulated by disrup-
tion of oncogenes and tumor suppressor genes in neoplastic 
cells. Other factors, such as the modified interaction between 
stromal and epithelial compartments that influence androgen 
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receptors, and studies on molecular pathways, signal mole-
cules, and molecules of ECM involved in prostate carcinogen-
esis are crucial to the better understanding of cancer develop-
ment and progression [1-14].

Different models were used to study cell to cell and ECM 
interactions in prostate cancer: cell line cultures, animal mod-
els, and prostate cancer tissue specimens obtained at intraop-
erative consultations and tissue processed and embedded in 
paraffin blocks. Preclinical animal models on rats, mice and 
dogs were established in an attempt to mimic the initial steps 
of prostate carcinogenesis as well as carcinomatous progres-
sion and metastatic potential [14-17].

ANDROGEN RECEPTORS

Androgen plays a significant role in the development of the 
prostate gland, whereas stromal cells are crucial to maintaining 
its proper function. In order to become differentiated, pros-
tatic epithelial cells require the presence of androgen recep-
tors both in stromal and epithelial parts of prostate [2-4,8].

It is well known that this interaction performed via andro-
gen receptors (AR) is also important in prostate carcinogenesis. 
Epithelial AR deprivation therapy is used in prostate cancer, 
but it cannot completely suppress the growth of the tumor. 
Stromal AR, thus, appear to have a more important role than 
AR in epithelial tumorous cells. Activated stromal AR affect 
stromal myofibroblasts, through which prostate carcinoma 
progression is promoted, and seem to be significant even in 
androgen-resistant tumors [18-21]. These stromal receptors 
may be possible targets for future anticancer therapies and are 
the subject of many studies done on in vitro cell lines, tissue 
recombination experiments, and androgen receptor knockout 
animal models.

FIBROBLASTS AND 
MYOFIBROBLASTS

Myofibroblasts are dynamic stromal cells found at the 
site of pathologic tissue remodeling. Carcinoma cells have 
the ability to transform fibroblasts into reactive myofibro-
blasts, which synthesize different ECM components: collagen, 
fibronectin, tenascin, versican, galectin, laminin and others. 
Myofibroblasts can also express proteases and secrete growth 
factors that support angiogenesis. They are crucial cells that 
create a tumor-promoting reactive stroma setting, and can 
stimulate cancer cell growth and migration [22-24].

Prostate cancer-reactive stroma is composed of a myofi-
broblasts and fibroblasts mixture, with a significant decrease 
in fully differentiated smooth muscle, whereas normal pros-
tate stroma consists predominantly of smooth muscle [25-27]. 
Proteins of the ECM play role in cell adhesion and cell 

signaling, and remodeling of ECM influences cancer spread 
and invasion. The “new” microenvironment, created in this 
way, is continuously changing to support the formation of 
glandular structures and tumor structures, as shown in some 
animal models [21, 27-29].

The origin of carcinoma fibroblasts and myofibro-
blasts, including the origin of stromal fibroblasts and bone 
marrow-derived mesenchymal stem cells, remains question-
able, so as the epithelial-endothelial-mesenchymal transition 
process [9,12,14]. Mechanical force has been studied as one of 
the factors in conversion of fibroblasts into myofibroblasts. It 
was investigated with different cell types employing micro-
fluid platforms. The expansion of tumor cells induces mechan-
ical changes in multiple fibroblastic populations in the tumor 
microenvironment, exerting force on surrounding tissue and 
inducing local compressive stress [30].

Fibroblast and myofibroblastic stromal changes in pros-
tate carcinoma could be easily quantified by a simple histo-
chemical method (Mallory or Masson trichrome staining) 
(Figure 1) as well as by an immunohistochemical procedure 
using antibodies to vimentin, α-  smooth muscle actin and 
desmin  [5,25]. Loss of the smooth-muscle cells, quantified 
immunohistochemically by intensity of the stromal changes, 
and the appearance of the stromal fibro- and myofibroblasts 
was associated with a shorter disease-free period and the 
worse outcome [31,32].

A relatively recently described phenomenon, that might 
be related to the fibro- or myofibroblasts and their products, 
is the appearance of the so-called periacinar halos, retraction 
clefting or cleft-like spaces within a neoplastic prostatic tissue. 
The neoplastic cells of prostatic cancer often appear pulled 
away from the surrounding stroma, leaving halos around 
the acini [33-36]. Some authors have suggested that this retrac-
tion artifact might serve as an additional criterion in the diag-
nosis of carcinoma, especially when prominent and identified 
in the half or more of the gland [33-37]. The most pronounced 
periacinar retraction was noticed in the association with 
Gleason pattern 3 adenocarcinoma. Some authors have sug-
gested that this phenomenon is probably only an artifact [38]. 
Conversely, other authors attributed the periacinar retrac-
tion to the stromal changes present in prostatic adenocarci-
noma and did not consider these clefts to be a simple artifact. 
Similarly to the retraction artifact, it has been shown that the 
stromal reaction in prostatic carcinoma is more pronounced 
in Gleason pattern 3 [25,39]. Furthermore, periacinar retrac-
tion artifact was also proposed as an additional and helpful 
diagnostic criterion in breast and urothelial carcinoma [40,41]. 
In addition, recent results revealed that the retraction artefact 
in prostatic carcinoma correlates with different clinicopatho-
logical features of the tumor as well as with the biochemical 
recurrence-free survival, pointing out that the presence and 
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the extent of the retraction artifact could predict worse out-
come in patients with prostatic adenocarcinoma  [42]. The 
similar prognostic significance of retraction artifact has been 
reported in breast carcinoma [43,44].

COLLAGENS

Collagens are fibrillar proteins that form a three-dimen-
sional frame of ECM and are important in the cell signaling 
processes and metabolism. They are a fundamental part of 
stromal changes that affect tumor progression, cell survival, 
apoptosis and cell invasion [9]. Collagens are produced by 
fibroblasts and myofibroblasts. In prostate cancer, the network 
of collagen fibers is loose, and its organization is disturbed. 
Metabolic changes in carcinomatous stroma are increased 
compared to metabolic changes present in normal prostate 
stroma. Type  I collagen is thorn and results in formation of 
biologically active collagen I peptides, which then facili-
tate proliferation and angiogenesis. Also, collagen type I can 
induce a reduction of E-cadherin-mediated cell–cell adhesion 
and the loss of E-cadherin, which is important for invasion 
capability. Type I collagen slitting is also required for angiogen-
esis at tumor sites. Decreased density of collagen and reticular 
fibers were found in human prostate tumor stroma [45-47]. 
Therefore, the assessment of changes in fibrillar components 
that affect the stromal environment in prostate cancer may 
help in the evaluation of tumor aggressiveness [29].

ELASTIC FIBERS

Elastic fibers are important for tissue flexibility. Similar to 
collagens, after elastin degradation, elastin peptides induce 
stromal cells (fibroblasts, macrophages, lymphocytes, smooth 
muscle cells and endothelial cells) via the elastin–laminin 
receptor. There are limited data on the role of elastin and its 
receptors in tumor invasion, but they are disorganized in the 
stroma of prostate cancer.

Elastin and its peptides are factors involved in tumor inva-
sion, because these molecules are known to stimulate receptor 

signaling and chemotaxis. This could explain the morphomet-
ric changes reported in certain tumor cell lines invading elastic 
lamina [29, 46].

LAMININS

Laminins are heterotrimeric molecules made up by one α, 
one β and one γ chain. Thus far, five α-chains, three β-chains 
and three γ-chains have been described. These chains com-
bine into at least 14 different types of laminin. The distribu-
tion of these laminin isoforms varies between tissues, but in 
most basal membranes (BMs) more than one type of laminin 
is present. Laminins are associated with cell differentiation, 
preservation of cell shape and movement, maintenance of tis-
sue phenotypes, promotion of tissue survival and are present 
in the basal lamina. Their functions in tumor invasion are the 
subject of extensive research [48-50]. Some studies reported 
significant decrease in the expression of laminin in carcinoma 
comparing to the adjacent prostate tissue (Figure 2) [39]. It has 
also been shown that membrane type 1 matrix metalloprote-
ases are modifying the laminin-rich basal membrane, playing 
thus a role in transformation of prostate intraepithelial neo-
plasm into invasive cancer through their capacity to degrade 
laminin [39, 51,52].

TENASCIN-C

Tenascin-C is a large (180–300  kDa), hexameric multi-
domain glycoprotein and located mainly in the ECM. It is 
involved in tissue interactions during embryogenesis, wound 
healing, inflammation, and oncogenesis. Tenascin-C is con-
sidered to be an anti-adhesive molecule in the stroma, mod-
ulating adhesion between cells via fibronectin, an important 
factor in the cell to ECM adhesion. Tenascin expression in 
prostatic tissue is considered to decrease or disappear after the 
maturation of the gland is finished. Some studies reported that 
tenascin expression is increased in prostate cancer stroma and 
tenascin-C significantly increased in stroma around neoplas-
tic glands. These data suggest a potential role of tenascin-C 

FIGURE 1. Mallory or Masson trichrome staining in A) benign prostate hyperplasia (x400) and B) prostate cancer (x400).
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in the regulation of tumor cell proliferation, invasion, and 
metastasis [52-57].

In our experience, the expression of tenascin-C was sig-
nificantly increased in carcinomatous tissue compared to the 
adjacent peritumourous tissue and BPH. Tenascin-C was pre-
dominantly expressed in stroma around neoplastic glands but 
was also expressed in the wall of medium-sized blood vessels, 
which served as an internal positive control. However, in only 
a few cases we noted a weak positive tenascin reaction in the 
cytoplasm of neoplastic epithelial cells (Figure 3) [39].

GALECTIN-3

Galectin-3 interacts with the intracellular glycoproteins, 
cell surface molecules, and the extracellular matrix proteins. 
According to the present data, it is down-regulated in prostate 
cancer. Van den Brule et al. suggested that galectin-3 might 
play an anti-tumor role when present in the nucleus, whereas 
it could favor tumor progression when expressed in the cyto-
plasm of the tumorous epithelial cells [58]. Other authors did 
not confirm these results, but it was suggested that the expres-
sion of galectin-3 in cytoplasm of the epithelial cells correlates 
positively with tumor progression [59]. It is shown that galec-
tin-3 can inhibit anticancer drug-induced apoptosis through 
regulation of Bad protein and suppression of the mitochon-
drial apoptosis pathway [60]. It could be one of the target pro-
teins for cancer treatment. The presence of galectin-3 in the 
stroma, however, indicated an unfavorable prognosis [58-62].

In our experience, the expression of galectin-3 was signifi-
cantly decreased in carcinoma compared to adjacent peritu-
mourous tissue and BPH (Figure 4).

CONNEXINS

Connexins are transmembrane proteins that form 
intercellular channels important for cell communication 
and adhesion. It is also a tumor suppressor gene (protein) 
[63-65]. Dysfunction of connexins plays a role in prostate 

carcinogenesis and its expression is often reduced during 
tumor progression and metastasis. In study of Benko et al. 
decreased connexin 43 (Cx43) expression was related to the 
prostate cancer progression. Lower Cx43 expression was 
associated with shorter follow-up time, indicating a shorter 
disease-free survival and higher preoperative PSA values [66].

SYNDECAN-2

Syndecan-2 (SDC2) is a heparan-sulfate glycosaminogly-
can, which participates in cell adhesion and migration, and 
is known to play a role in cancer progression and neoangio-
genesis [67,68]. SDC2 overexpression in prostate cancer was 
significantly associated with the established features indicative 
of worse prognosis, such as a higher preoperative PSA value, a 
higher Gleason score, positive surgical margins and the extra-
prostatic extension. Expression of SDC2 was also associated 
with the biochemical disease progression [69].

METALLOPROTEINASES

An elevated levels of metalloproteinases were registered 
in the stroma of various cancers. Matrix metalloproteinases 
(MMP) are produced by both tumor epithelial and stromal 
cells. MMPs are able to degrade a variety of ECM molecules, 
and regulate signaling pathways that control cell growth, sur-
vival, invasion, inflammation, and angiogenesis. In normal tis-
sue MMP activity is carefully controlled, but in cancer their 
control mechanisms are altered. In a recently published study, 
it was found that expression of MMP-2, MMP-3, and MMP-9 
was increased, favoring tumor progression [51,52].

ANGIOGENESIS

Angiogenesis is important for tissue growth as well as for 
tumor generation, progression, and its malignant behavior. 
Neovascularization in prostate carcinoma develops not only 
through cell-to-cell interaction, but also via multiple autocrine, 

FIGURE 2. Immunohistochemical laminin staining in A) benign prostate hyperplasia, showing positive cells in stroma (x400) and B) pros-
tate cancer, showing negative cells in stroma (x400).
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paracrine and mechanical factors, and is similar to the one seen 
in the wound repair process [8-12]. As previously mentioned, 
prostate cancer stroma is composed of ‘reactive’ fibroblasts and 
myofibroblasts, responsible for extracellular matrix remodeling 
and increase in local vascular density. Stromal cells are capa-
ble of regulating angiogenesis by various protein and cytokine 
molecules. Protein ps20 is known to enhance endothelial cell 
motility and its synthesis is stimulated by TGF-β [70]. Another 
humoral factor, vascular endothelial growth factor (VEGF), is 
also reported to act as an endothelial cell mitogen and can be 
synthesized by both epithelial cells and myofibroblasts. Some 
studies confirmed that VEGF expression in prostate cancer 
correlates to a PSA level and Gleason score [71, 72].

GROWTH FACTORS, PEPTIDES AND 
RECEPTORS

Prostate cancer stromal cells express epidermal growth 
factor (EGF) as well as transforming growth factor-α (TGF-
α). These factors are also synthesized by malignant epithelial 
cells and signal through epidermal growth factor receptors 
(EGFR). Autocrine expression of EGF and TGF-α affects the 

autonomous growth of human prostate cancer. Also, it seems 
that EGF plays an important role in stimulation of invasive-
ness of prostate cancer by promoting chemomigration of 
tumorous cells. The EGFR family-related oncogenes HER-2/
neu, HER-3, and HER-4 are also differentially expressed in the 
stroma of prostate cancer. HER-4 receptor protein is strongly 
expressed in normal epithelial cells, but not in cancer.

Transforming growth factor-β (TGF-β) increases cancer 
growth and metastasis because of the altered expression of TGF-β 
receptors. This signaling pathway is downregulated in prostate 
cancer. The expression of TGF-β RI and RII proteins is reduced 
in both the primary cancer and lymph node metastases [73,74].

Human cancer cells acquire autocrine expression of fibro-
blasts growth factor-2 (FGF-2), which encourage cancer cell 
proliferation and elevates the titer of FGF-2 in patients’ serum. 
FGF-2 regulates changes in ECM by modulating expression of 
proteases and promoting the synthesis of collagen, fibronec-
tin, and proteoglycans.

Prostatic stromal cells secrete insulin-like growth factor-I 
and II (IGF-I, II), which stimulate the growth of epithelial tumor 
cells via the EGFR signal transduction cascade. However, its 
importance in prostate carcinogenesis is still unclear.

FIGURE 4. Immunohistochemical galectin-3 staining in prostate 
cancer, showing negative cells in stroma (x400).

FIGURE 3. Immunohistochemical tenascin-C staining in A) benign prostate hyperplasia, showing negative cells in stroma (x400) and B) 
prostate cancer, showing positive cells in stroma (x400).
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It appears that nerve growth factor (NGF) is produced 
by both stromal and epithelial tumor cells, but prostate can-
cer cells that produce autocrine NGF are able to escape para-
crine dependence of stromal cell-derived NGF. Upregulation 
of autocrine neurotrophin expression may be associated with 
invasion along the perineural space and metastasis [75].

Vascular endothelial growth factor (VEGF) promotes 
angiogenesis in prostate carcinoma.

Platelet-derived growth factors (PDGF) contribute to 
cell proliferation, survival, transformation, and chemotaxis. 
Prostate cancer expresses both PDGF-A and the PDGF-A 
receptor, which are presumed to play a role in malignant trans-
formation in prostate cancer. PDGF-B has not been detected 
in this type of carcinoma [74-77].

CYTOKINES AND RECEPTORS

Hepatocyte growth factor (HGF) is expressed in the 
stroma of the human prostate. It stimulates proliferation and 
motility of cancer cells, interacting through c-met protoonco-
gene product located in the epithelial cells.

Other cytokines, such as interleukins -1 (IL-1), -2 (IL-2), or 
interferon-alpha, -beta, and -gamma are also expressed during 
prostatic carcinogenesis. Studies have reported contradictory 
results about IL-6 signaling and IL-6 receptors in cancer cells 
in vitro and in tissue. IL-10 upregulates expression of tissue 
inhibitor of metalloproteinase-1, -2 and -9 which is consistent 
with its overall inhibitory effect on cancer cells [78].

CONCLUSIONS

Many mechanisms are involved in the biology of prostate 
cancer growth and progression. Collaboration between epi-
thelial and stromal compartments, that both interact under 
the influence of androgen and other hormonal factors, is 
among the most important, resulting in a formation of micro-
environment suitable for cancer growth and progression. 
Consequently, the interaction of different extracellular matrix 
proteins, glycoproteins, metalloproteinases, growth factors 
and their receptors is altered. A  new suitable environment 
is created for neovascularization and survival of resistant 
cell clones capable of self-renewal, invasion and metastasis. 
In addition, these stromal changes could serve as valuable 
additional tools in diagnosis and prognosis of prostate cancer. 
Further investigation is needed for the novel therapeutic pos-
sibilities that could influence stromal cells in the tumor.
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