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INTRODUCTION

One of the most important breakthroughs in biomedicine 
was the publication of the first draft of the human genome at 
the beginning of this millennium [1,2]. Since then, we have wit-
nessed impressive technological developments, particularly 
with the birth of the many “-omic” approaches (e.g., genom-
ics, transcriptomics, epigenomics, proteomics, metabolomics, 
and more). These have already made important  contributions 
to the progress of classical medicine towards personalized 
medicine, and further on to “precision medicine.” The term 
“personalized medicine” indicates the development of a par-
ticular therapeutic path for each and every individual patient, 
based on their unique characteristics. These “unique charac-
teristics” are very often influenced by the genetic background, 
and applications such as pharmacogenomics and gene thera-
pies are thus used. Further advances, in particular in the field 
of genetics, are now the main drivers for development of what 

is called precision medicine –technology-driven and partici-
pant-centered approaches that can be used for disease classi-
fication [3,4].

For the case of antidepressant treatments, two recent 
meta-analyses have shown that important improvements 
can be obtained when treatments are guided using com-
mercially available pharmacogenetic kits for genetic pro-
filing (e.g., Neuropharmagen, GeneSight, CNSDose and 
NeuroIDgenetix). Indeed, the risk ratio for treatment 
responses between guided and nonguided treatments was 
1.36 in favor of guided treatments [5], while symptom remis-
sion was 1.71-fold more likely to be achieved with guided treat-
ments [6].

Every day, huge amounts of data in various forms are being 
collected and processed, from genomic to organ-imaging 
information. To bring these “-omic” data to the clinical level, 
tools for efficient data processing, analysis, and interpreta-
tion are being developed. However, with the complexities of 
the required actions increasing, the need for more and more 
powerful and intricate analysis and interpretation tools is also 
increasing. The major benefits that are expected to be gained 
by these sophisticated approaches are the identification, treat-
ment, and monitoring of complex, multifactorial diseases. 
Here, the data on the disease symptoms that are accompanied 
by demographic and life-style information can be taken to a 
further level by the various molecular biology analyses where 
thousands of tiny bits of information are gathered.

Psychiatry is one of the fields that can particularly gain 
from such “-omics” data and new analytical approaches. 
Indeed, current psychiatric diagnosis is based on subjective 
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Compared to other medical fields, the situation in psychiatry is particularly lacking in terms of identification of biological markers that can 
complement current clinical interviews. Such markers would enable more objective and rapid clinical diagnosis and allow more accurate 
monitoring of treatment responses and remission. Current technological developments can provide analyses of various biological marks at a 
high-throughput scale and at reasonable cost, and therefore such “-omic” studies are also now entering psychiatry research. However, big data 
demands a whole plethora of new skills in data processing before clinically useful information can be extracted. To date, the classical approaches 
to data analysis have not really contributed to identification of biomarkers in psychiatry. However, the extensive amount of data might be taken 
to a higher level if artificial intelligence can be applied, in the shape of machine learning algorithms. Not many studies on machine learning in 
psychiatry have been published, but we can already see from the handful of studies now available that the potential to build a screening portfolio 
of biomarkers for different psychopathologies, including suicide, exists.
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presence of suicidal ideation). The job of the model is then 
to predict the outcome based on the association of previ-
ously observed input and output data. Often-used algorithms 
include regression, decision trees, and random forests [10]. 
Decision trees are a model based on hierarchy, which com-
prises the root, internal decision nodes, branches, and final 
leaf nodes. Each internal decision node (which represents a 
test) can provide multiple branches (which represent a test 
outcome) and lead to a new internal decision node or a final 
leaf node (the final outcome). The process starts at the root 
and ends at the final leaf node [10]. Random forests use a sim-
ilar approach that creates and combines multiple decision 
trees. Contrary to the decision trees described above, each 
decision tree of a random forest is comprised of a random 
subset of the original dataset, and it can test random variables 
at nodes. The final outcome of a random forest depends on 
the results of each decision tree. A major advantage of the ran-
dom forest approach is that it can handle large datasets, due to 
its robustness to noise [11]. The steps of the learning process 
normally consist of problem identification and data collection, 
and then data preprocessing, which are followed by training 
the model using various algorithms. Based on the result, the 
parameters can be adjusted to retest the model, until the best 
model is selected. Ideally, the model should then be validated 
before entering into general use, by testing it on a new set of 
test data [12].

Unsupervised learning

In this form of machine learning, the data provided are 
unlabeled, and therefore the model cannot make any predic-
tions. In turn, the model can look for patterns or abnormalities 
(e.g., groups of patients who show similar behavior patterns). 
Often-used algorithms include clustering and principal com-
ponent analysis [13]. Clustering can be achieved using various 
algorithms, with k-means clustering and hierarchical cluster-
ing used in particular. In the k-means clustering approach, k 
stands for the number of clusters we wish to define. From the 
dataset, a k number of data points are selected. The remain-
ing data points are added to the k clusters based on the prox-
imity – they get added to the nearest cluster. Next, the mean 
of a cluster is calculated, and each data point gets added to 
the nearest cluster, based on the mean value. This process is 
repeated with various values of k, until the sufficient ratio of 
decreased variance inside a cluster and the number of k is 
achieved. Hierarchical clustering is a process of joining data 
points into clusters sequentially, until there is one large group. 
This works on the basis of similarity and distances between 
data points and can be graphically represented in the form of a 
dendrogram. We can observe how many clusters (comprised 
of two data points) there are, and the clustering order –clusters 

clinical evaluation, without any molecular-genetics tests 
involved. In the era of personalized and precision medicine, 
mental disorders might be better explained, understood, and 
treated.

The aim of this review is to introduce machine learning 
and its most commonly used algorithms to showcase their 
potential use in psychiatry. Furthermore, we present practical 
examples of the use of machine learning with high-through-
put data (i.e., genomics, metabolomics, epigenomics and 
imaging) associated with suicidal behavior. Finally, we discuss 
the challenges that need to be faced and the opportunities that 
machine learning can provide.

MACHINE LEARNING AND 
PSYCHIATRY

Machine learning

Compared to just a decade ago, the amount of data that is 
being produced has sky-rocketed. It is predicted that by the 
end of 2025, 175 zettabytes of data will have been produced [7]. 
In this era of big data, great computational power is needed 
to increase the dimensionality of the analyses and to help 
towards removing as much bias as possible. 

When a computer is required to process a simple task, it 
is easy to give instructions by programing the computer. As 
the task complexity increases, it is often better if we allow the 
computer to identify the most efficient solutions without any 
further specific instructions in terms of how this is achieved, 
which takes us into the realms of machine learning. 

Machine learning is a relatively recent field that has devel-
oped from the discipline of artificial intelligence. A broadly 
used definition was given by Mitchell in 1997, when he stated 
“A computer program is said to learn from experience E with 
respect to some class of tasks T and performance measure P, if 
its performance at tasks in T, as measured by P, improves with 
experience E.” Machine learning is therefore based on the idea 
that a computer can learn from the data that it is given and can 
even improve its algorithms based on experience, without the 
need for further detailed instructions [8]. Machine learning 
can be further divided into the distinct categories of super-
vised learning, unsupervised learning, and reinforcement 
learning, which are based on the signals the model receives 
(Figure 1) [9].

Supervised learning

The model is provided with labeled data, which means 
that the model already has the information as to which data 
are the input (feature or attribute; e.g., a person is a member 
of a psychiatric inpatient group or a member of a healthy con-
trol group; age), and which data are the output (outcome; e.g., 
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identified last have less similarity to the other clusters. In prin-
cipal component analysis, the goal is to use the principal com-
ponents to reduce the amount of original dimension d to a 
new combined number of dimension k, with minimal loss of 
feature information. These principal components are used to 
explain the variance of the dataset; the principal component 
with the largest variance will best describe the differences 
between the dataset samples. By focusing on the most relevant 
features, the complexity of the data and the algorithms can be 
reduced, thus making models simpler and more robust [10,13].

Reinforcement learning

This form of machine learning uses a feedback system to 
find the best possible algorithm. The model interacts with its 
environment by preforming actions, where each action elicits 
a response, whether it be positive or negative. Based on the 
response of the environment, the model will adjust its next 
action accordingly. The response of the model is therefore deter-
mined by the response of the environment and vice versa [14].

Compared with classical statistics, machine learning pro-
vides multiple advantages that can complement, or even sur-
pass, findings that are revealed by pure statistics. As opposed 
to classical statistical approaches, machine learning allows 
for predictions, while enabling the integration of clinical, 
biological, and epidemiological data [15]. Classical statistical 
approaches are designed in a way that allows only a small num-
ber of variables to be analyzed at the same time, which can lead 
to over-simplification. This might be a problem when dealing 
with “wide data,” where the number of observations is smaller 
than the number of features (e.g., genome-wide next-genera-
tion sequencing of a small number of subjects can produce mil-
lions of data points for each single subject), which is also known 
as a “high dimensional data problem” [12,16]. Similarly, multiple 

testing can greatly increase the occurrence of false-positive 
results, which are also known as type I errors. Type I errors can 
be minimized by using p-value corrections, although such cor-
rections can, in turn, mask significant differences for a smaller 
effect, and this can result in false-negative results, which are 
also known as Type II errors [17]. This is especially dangerous 
when studying multifactorial complex disease states, such as 
suicidal behavior, where a combination of often small impact 
risk factors might enable manifestation of the state.

For those interested in more details on machine learning 
applications and its practical use, a good understanding of 
mathematics, statistics, and computing is needed. Multiple 
literature sources are available, such as Bishop [9] and Hastie 
et al. [18], as also for software such as Python (e.g.,Scikit-learn) 
and R (e.g.,caret).

USE OF MACHINE LEARNING IN 
PSYCHIATRY

Machine learning has made significant progress from its 
beginnings in the 1950s, when Samuel designed a simple pro-
gram that could play a game of checkers [19]. In recent years, 
machine learning has become a promising tool, and various 
real-life applications already use its advantages, for tasks such 
as email spam filtering, weather and traffic prediction, and 
image and speech recognition [20]. Machine learning has 
also been recognized as a novel emerging technology in bio-
medical research [21-23], including psychiatry [24]. For exam-
ple, a recent study by Qi et al. (2020) used machine learning 
algorithms to identify micro-RNAs expressed in the blood 
of patients suffering from major depressive disorder that dif-
fered significantly from micro-RNAs expressed in the blood 
of healthy control subjects [25].

FIGURE 1. (A) Machine learning is an integral part of artificial intelligence. (B) Machine learning can be categorized into the three 
main fields of supervised learning, unsupervised learning, and reinforcement learning based on the purpose of the proposed 
model.

BA
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Two of the phenomena within psychiatry that would gain 
significantly from big data analysis are suicidal ideation and 
suicidal behavior (including suicide attempts and completed 
suicides). In recent years, progress has been made in patient 
stratification based on their clinical data and health records, 
which should help in the implementation of machine learn-
ing approaches. Indeed, machine learning approaches have 
already been used for analysis of social-media data  [26-28], 
health records and questionnaires [29,30] and suicide 
notes [31-33]. 

These studies have highlighted the potential of machine 
learning and its use in the social aspects of suicidality research. 
As these data are often self-reported, there is the potential for 
multiple sources of bias. The process of assessing suicide risk 
is a difficult and complicated task that rests heavily on the 
shoulders of healthcare providers [34]. The classical approach 
of diagnosis that consists of symptom-listing criteria would 
benefit greatly from the use of biomarkers [35]. 

People with suicidal ideation and behavior are often in 
contact with primary care or emergency department employ-
ees, who do not always have the time or training to be able to 
identify the needs of people with suicidal tendencies [36,37]. 
Studies have shown that up to 80% of inpatient suicide victims 
deny suicidal ideation in their last communications with a cli-
nician [38], which further highlights the need for the use of 
biology-based biomarkers. Based on accumulated studies on 
families, twins, and adoptees, it has become clear that as well 
as environmental factors, genetics also account for more than 
40% of the variability in suicidal behavior [39]. Multiple stud-
ies have examined potential biomarkers of suicidal behavior 
to date. However, despite this large body of work to address 
the biological components of suicidal behavior, little progress 
has been made in the identification of specific and precise 
biomarkers [40]. This might be due to the complexity of sui-
cidal behavior and the data acquired from suicide research. 
Focusing on an interconnected network of various biomark-
ers, genetic influences, and environmental factors, while using 
the advances of both classical statistical and machine learn-
ing approaches, might therefore pave the way to a new era of 
understanding of suicidal ideation and behavior.

MACHINE LEARNING AND 
HIGH-THROUGHPUT DATA OF 
BIOLOGICAL COMPONENTS IN 
SUICIDAL BEHAVIOR

In suicide research, single biomarker associations such 
as particular single-nucleotide polymorphisms (SNPs) and 
mRNA transcripts or metabolites have shown some degree of 
repeatability between different studies, although this has been 
limited. Therefore, inconsistencies between studies are more 

or less present at all times. To overcome small-scale analysis, 
meta-analyses that combine and reanalyze all of the available 
data on particular biomarkers and phenotypes have appeared 
frequently. The more precise estimates of the effect sizes and 
the markedly increased statistical power are the most import-
ant advantages of such meta-analyses. Furthermore, their 
particular value is the production of consistent results from 
inconsistent results of individual studies, which thus gives 
meta-analyses a clinical value [41].

In suicide research, one interesting example is the sero-
tonin transporter gene, which has been widely studied as 
one of the most important genes in serotonin signaling that 
is believed to be significantly disrupted in suicide. Data on 
the polymorphism of “serotonin-transporter-linked poly-
morphic region (HTTLPR) 5” that is located upstream of the 
transcription start site can be followed through the evolution 
of meta-analyses [42-46]. This started with the first in 2003, 
which included 12 case-control studies [47]. At that time, sig-
nificant associations with suicidal behavior were defined. Five 
more meta-analyses followed, with each presenting some-
what different results [42-46]. The last meta-analysis was 
performed in 2019 [48], and the number of studies had then 
increased from the 12 of the initial meta-analysis to 45, with 
an increase from roughly 2500 subjects to 15,000 subjects, 
respectively. The main result of this final meta-analysis was an 
association between the low expressing allele and violent sui-
cide attempts, which has often been apparent in such data. On 
the other hand, no associations with any other suicide pheno-
types were apparent, indicating a very particular role of the 
serotonin transporter in suicidal behavior.

As suicidal behavior, or the suicidal phenotype, cannot be 
explained by variations in a single marker, it appears instead 
to be the result of numerous variations with small effect sizes 
across a broad network of markers. This has thus oriented 
further research toward the “-omic” approaches. Staying at 
the level of DNA, we need to consider the various genome-
wide association studies (GWAS) where several hundred 
thousand polymorphisms have been interrogated at once, and 
together with environmental factors, these have been shown 
to contribute to the particular phenotype. In a comprehen-
sive review, Gonzalez-Castroet al. [49] used a computational 
systems biology approach to analyze the available data from 
GWAS on suicidal behavior. The gene ontology analysis gave 
seven statistically significant results: Regulation of glucose 
import in response to insulin stimulus; regulation of protein 
localization to the cell membrane; positive regulation of endo-
peptidase activity; heterotypic intercellular adhesion; regula-
tion of myocardial contraction; positive regulation of protein 
localization to the cell membrane; and positive regulation of 
protein localization to the cell periphery. In addition, analysis 
according to the Kyoto encyclopedias of genes and genomes 
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(KEGG) biological pathways gave three statistically significant 
results: Aldosterone synthesis and secretion, the Rap1 signal-
ing pathway, and arrhythmogenic right ventricular cardiomy-
opathy. However, for the KEGG analysis, all of these might be 
linked to suicidal behavior to some extent only through other 
comorbidities, psychiatric disorders, and stress, among others, 
which could, of course, all represent predisposing factors for 
suicide [49].

Similar approaches have been used with other 
high-throughput data, such as epigenome-wide associa-
tion studies (EWAS), where again several hundred thou-
sand markers were analyzed, in this case in terms of DNA 
methylation of CpG dinucleotides. In a recent study by Fiori 
and Turecki [50], 11 such studies were listed. This EWAS 
approach appears to be promising for determination of 
the relationships between differentially methylated regions 
(DMS) belonging to distinct biological pathways, and also in 
an understanding of the interactions between methylation 
of a specific locus and its nearby genomic regions. However, 
the main disadvantage of EWAS has been the lack of sig-
nificant overlap between the candidate gene approach and 
EWAS [50], which is very similar to the weaknesses deter-
mined from the GWAS [49].

This lack of overlap between hypothesis-free driven 
approaches and candidate gene studies, and the uncertain-
ties associated with novel genes in terms of their biological 
relevance and relatively weak statistical significance, might 
be what provoked further analyses like that of Sokolowski 
and Wasserman [51]. In their study, they searched through 
studies involving candidate SNPs, GWAS, copy number vari-
ations, linkage, whole-exome sequencing, mRNAs, proteins, 
and micro-RNAs to build a synopsis of 106 genes that were 
associated with suicidal behavior. Their study was indeed 
comprehensive and extended the interest in the spatial-tem-
poral development of the human brain. Furthermore, it rep-
resented a trigger to ask why artificial intelligence has not 
been used more often in investigations into the discovery of 
suicidal behavior biomarkers. The amounts of data available 
are huge, and the search for particular biomarker patterns in 
suicidal behavior might just benefit from such machine learn-
ing approaches.

GENE AND GENOME-BASED 
STUDIES OF SUICIDAL BEHAVIOR 
AND MACHINE LEARNING

Although GWAS are relatively “popular” due to their 
affordability and the genome-wide nature of the biomarker 
cover, the data are only rarely analyzed through machine 
learning. Ruderfer et al. (2019) showed the heritability compo-
nent of suicide attempts, and also its complex genetic nature, 

with partial, although at the same time distinct, overlap with 
psychiatric disorders. Population samples from both the UK 
Biobank and Vanderbilt University Medical Center (VUMC) 
were genotyped using microarrays, and the predicted proba-
bility of attempting suicide was calculated using random for-
est algorithms. The cohort from the UK Biobank comprised 
2433 cases who reported that they had attempted suicide 
(according to mental health assessment through an online 
questionnaire), along with 334,766 controls. The clinical fea-
tures for the VUMC cohort comprised 3250 cases with sui-
cide attempts and almost 3 million patients derived from the 
electronic healthcare records. The heritability estimates of 
suicide attempts for both cohorts showed significant genetic 
correlation and comparable common variation of about 4% 
for both the UK Biobank (h2 SNP = 0.035; p = 7.12 ×10−4) and 
the VUMC (h2 SNP = 0.046; p = 1.51 ×10−2). Significant correla-
tions were also seen for insomnia and for several psychiatric 
disorders or traits, such as depressive symptoms, neuroticism, 
major depressive disorder, and schizophrenia [52].

Discrimination between suicide attempters and non-at-
tempters that were based on a prediction model of SNPs 
was performed on psychiatric patients by Baca-Garcia et al. 
(2009). The genotyping of 840 SNPs in 312 different genes 
associated with brain function and development was carried 
out for 277 male patients. Using only three SNPs, it was possi-
ble to accurately group 67% of the male suicide attempters and 
non-attempters (i.e., rs10944288 in HTR1E [5-hydroxytrypt-
amine receptor 1E], hCV8953491 in GABRP [g-aminobutyric 
acid type A receptor subunit Pi] and rs707216 in ACTN2 [acti-
nin α2]).This provided relatively promising future guidelines 
for genetic tests that would facilitate psychiatrists in their clin-
ical work, where timely and objective identification of suicide 
attempters is of great importance [53]. 

A smaller scale study on 225 patients from the European 
Group for the Study of Resistant Depression (GSRD) and 12 
SNPs from candidate genes (i.e., HTR2A [5-hydroxytrypt-
amine receptor 2A], COMT [catechol-O-methyltransferase], 
ST8SIA2 [ST8 α-N-acetyl-neuraminide α-2,8-sialyltransfer-
ase 2], PPP3CC [protein phosphatase 3 catalytic subunit g] and 
BDNF [brain-derived neurotrophic factor]) was performed to 
investigate the interactions between SNPs and clinical vari-
ables, including suicidality, in treatment-resistant depression 
(with Hamilton Rating Scale for depression [HAM-D] >17). 
Based on machine learning and clustering algorithms, three 
SNPs (i.e., rs6313 in HTR2A, rs7430 in PPP3CC, and rs6265 
in BDNF) and absence of melancholia grouped 62% of the 
patients in the same group of therapy non-responders (HAM-
D<17). Although suicidality was shown to be an independent 
clinical variable for treatment prognosis in previous GSRD, no 
particular association was defined for this model [54].
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METABOLITE-ANALYSIS-BASED 
STUDIES OF SUICIDAL BEHAVIOR 
AND MACHINE LEARNING

Determination of metabolites through liquid biopsies 
of venous blood is a relatively noninvasive approach that 
can provide a wide range of information. A comprehensive 
metabolome analysis of 123 metabolites on three independent 
cohorts of psychiatric patients (with major depressive disor-
der, bipolar disorder) without and with medication has been 
performed. An important general finding was that metabolic 
profiles can be used to evaluate the severity of depression, and 
five metabolites were associated with severity of depression 
in the three cohorts (i.e., 3-hydroxybutyrate, betaine, citrate, 
creatinine and g-aminobutyric acid), independent of medi-
cation and diagnosis. Furthermore, several metabolites were 
also associated with suicidal ideation (i.e., kynurenine pathway 
metabolites and citrate), which allowed determination of the 
patients with and without suicidal ideation [55].

In the French Network of Bipolar Expert Centres, 635 bipo-
lar patients were included in a study of emotional hyper-reac-
tivity, with several different biological factors also measured. 
Using a machine learning algorithm, it was determined that 
the patients with emotional hyper-reactivity had significantly 
higher levels of suicide attempts (p = 1.4 × 10-8), and also sys-
tolic and diastolic blood pressure (p< 1.0 × 10−8) and high-sen-
sitivity C-reactive protein (p< 1.0 × 10−8). Based on these three 
measurements, these patients could be designated with emo-
tional hyper-reactivity with 84.9% accuracy [56].

EPIGENOME-BASED AND 
TRANSCRIPTOME-BASED STUDIES 
OF SUICIDAL BEHAVIOR AND 
MACHINE LEARNING

A recent study by Bhak et al. (2019) examined whether 
machine learning algorithms can accurately classify sub-
jects based on their DNA methylation and gene expression 
status in peripheral blood. Altogether, this study included 
samples from 56 suicide attempters, 39 major depressive 
disorder patients, and 87 healthy controls. After next-gener-
ation sequencing, the significant results were used as model 
features; i.e.,DMS and differentially expressed genes (DEGs). 
Three different comparison models were built to classify: 
Suicide attempters from patients with major depressive disor-
der (initially using 7353 DMS, no DEGs); patients with major 
depressive disorder from healthy controls (initially using 12633 
DMS, 16 DEGs); and suicide attempters from healthy controls 
(initially using 10412 DMS, 154 DEGs). After this testing, the 
model features decreased, respectively, to: 69 DMS; 80 DMS; 
and 95 DMS plus 7 DEGs. All three of these models managed 

to classify patients and healthy controls with good accuracy 
(>86%). Additional psychiatric score regression was developed 
using the HAM-D17 and the Beck scale for suicidal ideation 
questionnaires, where DMS and DEGs correlated with the 
results of the questionnaire, initially using 2150 DMS plus 
80 DEGs for correlation with HAM17, and 1273 DMS plus 
82 DEGs for correlation with suicidal ideation. Between the 
two regression models, 139 markers overlapped. Similarly, 
model testing then resulted in decreased numbers of features 
for HAM17 (810 DMS plus 48 DEGs) and suicidal ideation 
(467 DMS plus 51 DEGs). Finally, gene ontology enrichment 
was carried out, but no significant enrichment was observed 
between suicide attempters and patients with major depres-
sive disorder. However, there was enrichment in the Hippo 
signaling pathway in patients with major depressive disorder, 
compared to healthy controls. The Hippo signaling pathway 
is named after the Hippo protein kinase, and it represents a 
key pathway in animal development and growth, as it regu-
lates the size of the organs. This pathway is also involved in 
antidepressant responses, although as the majority of these 
patients with major depressive disorder were prescribed with 
antidepressants, this result needs to be further investigated. 
For the regression models, the cell-adhesion protocadherin 
gene family was enriched in suicide attempters compared to 
the healthy controls for both of the regression models [57].

IMAGING STUDIES OF SUICIDAL 
BEHAVIOR AND MACHINE 
LEARNING

Imaging technologies have been widely used in psychiatric 
disorders [58]. There have been four studies to date that have 
used various imaging techniques to generate machine learn-
ing models that can differentiate between groups of subjects. 

Just et al. (2017) examined 17 suicide ideators and 17 con-
trol subjects, and searched for functional magnetic resonance 
imaging (fMRI) alterations in neural signatures and the detec-
tion of emotional components in these neural signatures. 
Words can evoke emotions, which result in brain activity; the 
premise behind this study was therefore that the members of 
each group will differ in their neurocognition patterns. While 
measuring brain activity, those in each group were presented 
with stimuli according to 30 concepts that were divided into 
the categories of suicide-related and positive and negative con-
cepts, with each presented for 3 s. As well as the location and 
intensity of the responses, the data were compared with data 
from known emotional states, with the specific emotional com-
ponents analyzed as Sadness, Shame, Anger, and Pride. Using a 
Gaussian naïve Bayes machine learning algorithm, a model was 
designed. This provided distinction between the groups with 
91% accuracy on the basis of the six concepts of “death”, “cruelty”, 
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“trouble”, “carefree”, “good”, and “praise” and the five regions of 
the superior medial frontal area, the medial frontal/anterior 
cingulate, the middle temporal, the inferior parietal, and the 
inferior frontal. In terms of the concepts, “death” was the great-
est discriminator between the groups. In terms of the specific 
emotional components, for the suicide ideation group, “death” 
evoked more Shame, “trouble” evoked more Sadness and less 
Anger, and “carefree” evoked less Pride. The biggest difference 
in the brain regions involved were seen for the anterior frontal 
region, where a stable signal was detected only for the control 
group, and the inferior parietal region, where the signal was 
more stable for the suicide ideators. Furthermore, of the 17 
subjects in the suicide ideation group, nine had undergone a 
previous suicide attempt. Here, the machine learning model 
differentiated between these two subgroups of the suicide ide-
ators with 94% accuracy. The concepts that best discriminated 
between the subgroups of suicide ideators were “death”, “lifeless”, 
and “carefree” with differentiation of the response seen in the 
superior medial frontal area, the medial frontal/anterior cingu-
late, and the middle temporal. For the specific emotional com-
ponents in the subgroup with suicide attempts, “death” evoked 
less Sadness, while “lifeless” evoked more Anger. They then 
considered the fMRI data of 21 additional suicide ideators who 
had originally been excluded from the study due to the lower 
quality of their measurements. These further suicidal ideators 
were tested against the 17 subjects in the original control group 
using the machine learning algorithm model. Although the 
accuracy of the model decreased to 87%, this still represents 
accurate classification. When they then compared these fur-
ther 21 suicidal ideators with the suicidal ideators subgroup 
without previous suicide attempts (i.e., N = 8), the accuracy 
further decreased to 61%. This indicates that when a model is 
based on quality data, it can potentially work sufficiently well 
on noisier data, while the reverse is not true. Altogether, this 
study provides an insight into the alterations in the way peo-
ple internalize different concepts, and how this can affect their 
perspective and psychosocial state [59].

Resting-state functional connectivity (rs-fc)MRI is an 
imaging technique that is used to determine spatially separated 
brain regions that are activated at the same time, with the pos-
tulation that such joint activation represents an association. 
This method was used by Caceda et al. (2018) to investigate 
acute suicidal behavior not as a personality trait, but as a state. 
To do so, they compared rs-fcMRI of 10 recent suicide attempt-
ers (<3 days after their suicide attempt), nine suicide ideators, 
17 depressed nonsuicidal patients, and 18 healthy controls. The 
rs-fcMRI data were analyzed using support vector machine 
data-driven neural pattern classification. As the sample sizes 
were small, instead of the previously described train–test data-
set approach, they followed the leave-one-outcross-validation 
that is based on prediction of the status of a single subject based 

on the values of all of the other subjects. Twenty-one spatially 
independent components were compared. This model suc-
cessfully separated the recent suicide attempters from the 
suicide ideators with 78% accuracy. In these recent suicide 
attempters, both positive (default mode network: Limbic) and 
negative (default mode network: Insula) functional connectiv-
ity was observed. To further asses the model, the recent suicide 
attempters were imaged again after 5-7 days (although only 
seven agreed to participate). This additional study, however, 
did not confirm the previous results. For the comparison of 
the re-imaging of these now deemed stable suicide attempters 
and the suicidal ideators, the mean accuracy decreased to 58%. 
Similarly, the statistical significance of the model prediction 
dropped for the comparison of these recent suicide attempt-
ers with all of the depressed subjects (mean accuracy, 53%), and 
the comparison of the subjects who had shown suicidal behav-
ior anytime during their life with those without any suicidal 
behavior (mean accuracy, 54%). While the numbers of samples 
were low here, this study still provides an insightful view into 
the poorly understood acute suicidal behavior [60].

Gosnell et al. (2019) used both rs-fMRI and rs-fcMRI with 
63 suicidal and 65 nonsuicidal psychiatric inpatients to measure 
their structural and resting-state functional connectivities. They 
designed a random forest classification model that used 316 
structural features and 8256 resting-state functional connectiv-
ity features, which were reduced to 7 and 40 features, respec-
tively, for the final model. Here, all 47 of these features were sig-
nificantly different between the two study groups of suicidal and 
nonsuicidal psychiatric inpatients. Signals from various brain 
regions were involved, which included the frontal and middle 
temporal and other brain regions (e.g., amygdala). Using this 
final model, the separation of these study subjects was predicted 
with 79% sensitivity. This final model was later tested on a new 
set of subjects (i.e., an independent sample; n = 32), with a sen-
sitivity of 81%. Six resting-state functional connectivity features 
were present in the independent sample group as well, with 
three in the frontal region where changes in resting-state func-
tional connectivity features have been associated with suicidal 
behavior before. Changes in connectivity between the stud-
ied groups were observed for the frontal middle and superior 
gyrus, which showed altered connectivity with regions such 
as the rolandic operculum, insula, and putamen (all of which 
are involved in the reward circuitry). The amygdala and mid-
dle temporal pole had decreased resting-state functional con-
nectivity, indicating potential dysregulation of emotion. These 
results therefore indicate that changes in structural connectivity 
are associated with suicidal behavior [61].

Recently, Weng et al. (2020) used machine learning of data 
based on structural MRI from 41 depressive patients with sui-
cidal ideation, 54 depressive patients without suicidal ideation, 
and 58 healthy controls. They designed multiple models using 
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several machine learning algorithms to compare the depres-
sive patients who showed suicidal ideation with those without 
suicidal ideation, as a combined group of depressive patients 
without suicidal ideation and healthy controls. Later they sep-
arated this combined control group into two subgroups to 
increase the balance proportion (where both subgroups con-
tained depressive patients without suicidal ideation as well as 
healthy controls), and they use these groups for the training 
and testing of the model. The model with the best prediction 
classified the subjects with 85% prediction accuracy. Compared 
to the imaging methods of the two previously mentioned stud-
ies, structural MRI takes less time and has lower technique 
requirements, making it an easier method to use [62].

Imaging studies coupled with machine learning algo-
rithms can help to identify new neuroimaging markers, which 
might enable stratification based on patient suicide risk, and 
help in the design of the best therapies and treatment oppor-
tunities for individual patients. Such studies can help in the 
identification of brain regions that might represent targets for 
transcranial magnetic stimulation (which is already in use for 
treatment of depression), while the responses to the concepts 
can be used in psychotherapy approaches. 

CHALLENGES AND OPPORTUNITIES 
IN THE USE OF MACHINE 
LEARNING IN HEALTHCARE

Looking at the publication history, an exponential growth 
in the number of publications related to healthcare can be seen, 

including for psychiatry. However, as with other young and 
expanding fields, multiple challenges and questions continue 
to arise, for which we do not have the complete answers yet.

As observed in the studies using machine learning algo-
rithms for suicide research described above (detailed informa-
tion in Table 1), standardization is needed in terms of data pre-
sentation and the description of the model characteristics. As 
different models use different types of machine learning and 
algorithms, direct comparisons are not really possible. Indeed, 
the above-mentioned studies used different measurements for 
model efficiency, which ranged from accuracy, specificity, sen-
sitivity, area under the receiver operating characteristics curve 
(AUC), to the receiver operating characteristic curve (ROC). 
The number of studies that have focused on the biology has 
also been low and models have often not been validated with 
external samples, which leaves the need for additional replica-
tion studies [63].

Machine learning is comprised of many steps where 
human intervention can impose additional bias on the data 
collection, such as racial and gender differences [64], and 
study samples not reflecting the general population [65]. In 
addition, the models aim to predict whether a person is at 
risk for suicidal behavior, while they fail to determine the time 
component of this risk. Such predictions open the question 
whether a life-time threat of suicidal behavior exists, and the 
ethical considerations behind such powerful statements, not 
forgetting their effects on the person concerned.

Once validated and robust models are available, the goal 
will be to use these not only for strictly research purposes 

TABLE 1. Studies of suicidal behavior that have included machine learning algorithms and models

Study Data Machine learning algorithm Model prediction
Ruderfer et al.[52] GWAS Random forest AUC 0.94 (sensitivity = 0.92, specificity = 0.82)

Baca-Garcia et al.[53] Selected 840 SNPs from 
candidate genes Support vector machines 67% accuracy SA vs. non SA (sensitivity = 0.50, 

specificity = 0.82) 

Kautzky et al.[54] Selected 12 SNPs from 
candidate genes Random forest; k-means clustering 50% accuracy (sensitivity =25%)

Setoyama et al.[55] Metabolome Random forest AUC > 0.7
Dargelet al.[56] Different metabolites Random forest 84.9% accuracy (sensitivity = 0.787, specificity = 0.908)

Bhak et al.[57] Blood derived methylome 
and transcriptome Random forest

92.6% accuracy SA vs. MDD
87.3% accuracy MDD vs. CS (sensitivity = 59%)
86.7% accuracy SA vs. CS (sensitivity = 67.9%)

Just et al.[59] fMRI Gaussian naïve Bayes classifier

91% accuracy SI vs. CS (sensitivity = 0.88, specificity = 
0.94)
91% accuracy SI-attempt vs. SI-no attempt (sensitivity = 
0.88, specificity = 1)

Caceda et al.[60] Resting-state fMRI Support vector machine Mean AUC 0.9 (mean accuracy = 0.788) SA vs. SI

Gosnell et al. [61] Resting-state fMRI Random forest classification 

Testing sample: sensitivity = 0.79, specificity  
= 0.72, ROC 0.84
Independent sample: sensitivity = 0.81, specificity 
 = 0.75, ROC 0.72 20%

Weng et al. [62] Magnetic resonance 
imaging

Unsupervised neural network, 
supervised extreme gradient 
boosting and logistic regression

85% prediction accuracy (sensitivity = 75%,  
specificity = 100%) 

AUC = Area under the curve, CS = control group subjects, fMRI = functional magnetic resonance imaging, GWAS = genome-wide association 
study, MDD = major depressive disorder, ROC = receiver operating characteristic curve, SA = suicide attempt group, SI = suicide ideation group, 
SNPs = single nucleotide polymorphisms
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but also to provide healthcare services as well. Both health-
care and research personnel would thus benefit greatly from 
machine-learning-oriented training [65]. One of the import-
ant steps might therefore be data reduction, which is usually 
applied during model testing state, where as much data as pos-
sible are removed without losing or changing the conclusions 
obtained from the model. This enables the model to be more 
easily interpreted and to be available to a broader healthcare 
and research community [12]. Finally, the question of ethics 
needs to be addressed, in terms of the protection of privacy, 
data, and patient information.

CONCLUSION

Machine learning is a young and rapidly evolving research 
field that allows the handling of complex high dimensional 
data that can aid in the prognosis, diagnosis, treatment, and 
clinical workflow for various disease states, including mental 
disorders [66]. In addition, machine learning approaches are 
cost effective and noninvasive, which means that it represents 
a potential complementary tool for psychiatrists and other 
researchers and healthcare providers.

As seen from the study of Caceda et al. [60], when it comes 
to risk determination for suicidal behavior, time is of the 
essence. Once specific and sensitive machine learning models 
have been constructed and validated in independent sets of 
patients, the time component of machine learning will greatly 
depend on the clinical infrastructure, computational power, 
and skilled personnel. There is, however, probably a long way 
to go before machine learning can be implemented and used 
routinely in the clinical setting. Large amounts of unbiased 
data will be needed, together with the information technology 
infrastructure, and also adequate regulations according to law 
as related to institutions such as medicine agencies and health 
insurance companies.

Despite the numerous challenges that await, machine 
learning approaches hold a promise for better detection 
and understanding of suicidal ideation and behavior. When 
focused on the data that can be obtained from people 
with suicidal ideation or who show suicidal behavior, or 
even from those who have died by suicide, we believe that 
machine learning will allow us to determine the important 
networks of molecular biomarkers that can be traced as part 
of the diagnosis, treatment, and monitoring of psychiatric 
patients, to enable a new era of precision and personalized 
medicine.
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