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INTRODUCTION

Diabetes is a serious long-lasting pathological state charac-
terized by an inability of a body to carry out the physiological 
role of insulin. With currently more than 463 million peo-
ple suffering from diabetes, the number is expected to reach 
578 million by 2030, and 700 million by 2045 [1]. It is known 
now that the impaired interplay between beta cells in pancreas 
and insulin-sensitive tissues leads to the development of the 
most common form of the disease, Type 2 diabetes (T2D) [2].

The latest published consensus report of the American 
Diabetes Association (ADA) and the European Association 
for the Study of Diabetes (EASD) suggests a choice between 
five antidiabetic drug groups as the second line therapy for 

T2D. Three of these are the newer antidiabetic drug classes: 
sodium-glucose cotransporter-2 inhibitors (SGLT2i), dipepti-
dyl peptidase-4 inhibitors (DPP-IVi), and glucagon-like pep-
tide-1 receptor agonists (GLP-1RA) [3].

Precision medicine is a newer therapeutic concept which 
strives to distinguish patients based on their treatment 
response [4]. Pharmacogenetics is a tool of precision medicine 
that enables the determination of an optimal pharmacological 
agent for a single patient according to genetic traits [5].

It is evident today that antidiabetic drugs are not equally 
effective and safe for all patients and the costs of diabetes 
treatment are still increasing. However, technological tools 
that support the implementation of pharmacogenetics are 
rapidly developing [6]. Therefore, it is appealing to turn 
towards the individualized pharmacologic approach to treat 
T2D and its complications [7,8]. The insight into the pharma-
cogenetics of the three mentioned antidiabetic drug groups 
is of special importance. SGLT2i and GLP-1RA are gaining 
special attention since the most recent ADA-EASD guide-
lines endorse their use in patients with the diagnosis of ath-
erosclerotic cardiovascular disease (ASCVD) and chronic 
kidney disease (CKD), apart from the other benefits [3,9-11] 
(Figure  1). However, there has been growing pharmacoge-
netic evidence that the effectiveness and safety of these drug 
classes rely to a certain extent on variations in candidate 
genes [12]. Thus, by searching the PubMed database with 
the keywords: “Pharmacogenetics, Type 2 diabetes”, “SGLT-2 
inhibitors pharmacogenetics”, “DPP-IV inhibitors pharmaco-
genetics”, “GLP-1R agonists pharmacogenetics”, and “Type 2 
diabetes personalized medicine”, the aim of this review was 
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ABSTRACT

Type 2 diabetes (T2D) has a continuously rising prevalence worldwide. Pharmacogenetics has been recognized as a promising concept for 
pharmacological treatment of T2D, as antidiabetic drugs are not equally effective and safe for all patients, and the costs of diabetes treatment 
are increasing. The latest published guidelines on T2D treatment firmly endorse the use of newer antidiabetic drugs, sodium-glucose cotrans-
porter-2 inhibitors (SGLT2i), dipeptidyl peptidase-4 inhibitors (DPP-IVi), and glucagon-like peptide-1 receptor agonists (GLP-1RA), consider-
ing their satisfactory pharmacological effect and good safety profile. Furthermore, SGLT2i and GLP-1RA show protective effects in patients 
with established atherosclerotic cardiovascular disease and chronic kidney disease. However, there has been growing evidence that the effec-
tiveness and safety of these drug classes could depend on genetic variability. Here, we summarized the results of the published studies on the 
pharmacogenetic biomarkers for the three drug classes. A number of genetic variations have been investigated so far. The explored candidate 
genes mostly encode drug targets, drug-metabolizing enzymes, and genes linked to T2D risk. Although many of the results are promising, it is 
still necessary to obtain more information from larger controlled studies to confirm their clinical significance. This approach may lead towards 
more personalized treatment for patients with T2D.
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since they have been responsible for Familial renal glycosuria 
(FRG). This rare hereditary kidney disease is typically charac-
terized by reduced urinary glucose reabsorption which leads 
to chronic glycosuria [22]. To date, more than 70 SLC5A2 
gene mutations have been identified and correlated with 
FRG [23,24].

The first study that explored the role of genetic varia-
tions in SLC5A2 gene was conducted by Enigk et al. [25]. 
The authors investigated the association between four com-
mon SNPs in the SGLT2 gene region, namely, rs9934336, 
rs3813007, rs3813008, and rs3116150 with glucose parame-
ters and BMI in people without diabetes as well as associ-
ation with T2D. The main subject group consisted of 1013 
Eastern Germans of which 106 subjects were diagnosed 
with T2D. The control group consisted of 2042 individu-
als with 359 patients with T2D. The study did not find any 
association between investigated genetic variants and T2D 
traits. However, the rs9934336 SNP had a nominally signif-
icant effect on glucose concentrations and insulin levels 
in individuals without diabetes in both the main and the 
control group. Namely, the AA genotype of rs9934336 was 
associated with reduced glucose concentrations after 30 
minutes and insulin levels after 120 minutes during an oral 
glucose tolerance test (OGTT). Two other SNPs, rs3813008 
and rs3813007, were significantly associated with insulin 
and glucose levels, respectively, after 30 minutes in the 
OGTT, in the main group. Tested variants did not show 
the effect on the beta cell function or insulin resistance in 
any study group. This was the first study to investigate the 
effects of variants in SLC5A2 gene on glucose homeostasis 
in people without T2D. Results of the study implicate that 
potentially inactivating variants in SLC5A2 gene imitate 
SGLT2 inhibition and cause lower glucose and insulin lev-
els. Moreover, the results of the study were consistent with 
the earlier results of studies in animals that suggested that 
the effects of SGLT2 inhibitors are more prominent in ani-
mals with diabetes [26]. In addition, animal studies show 
that deletion of the SGLT2 gene results in significantly pre-
served beta cell function and decreases the incidence of 
beta cell death [27].

Zimdahl et al. have studied the effects of five common 
SNPs (rs9934336 G>A, rs3813008 G>A, rs3116150 G>A, 
rs3116149 G>A, and rs11646054 G>C) in the SLC5A2 locus 
on metabolic traits in individuals at risk for T2D. Three out of 
five SNPs were investigated in the earlier study by Enigk et al. 
In addition, they explored the pharmacogenetic effects of the 
SNPs in patients treated with empagliflozin. They included a 
total of 2600 individuals in the cross-sectional study and 908 
patients in the pharmacogenetic study. The study did not find 
any significant association between SNPs and either with 
tested metabolic parameters or with empagliflozin treatment 

to summarize the results of the studies published so far on 
the potential use of pharmacogenetics in the treatment with 
newer antidiabetic drugs. We also searched the lists of the ref-
erences in the primary articles to retrieve the additional arti-
cles of interest. All articles that matched the keywords, pub-
lished before September 2020, were considered.

SGLT2 INHIBITORS (GLIFLOZINS)

Gliflozins act by inhibiting the Type 2 of high-affin-
ity SGLTs, which are responsible for glucose reabsorption 
from the renal proximal tubule, leading to glycosuria [13-16]. 
Although most of gliflozins that are currently used also 
inhibit SGLT1, they show notably higher potency for SGLT-2 
over SGLT-1 (~260:1 for canagliflozin and ~2700:1 for 
empagliflozin), which is why they are sometimes marked 
as “selective” SGLT2 inhibitors [15]. The inhibition of the 
SGTL2 transporter results in a reduction in fasting plasma 
glucose of 1.3–2.4 mmol/L and reduction in HbA1c levels of 
0.4–1.1% [17]. Still, gliflozins show a low risk of hypoglycemia 
since they exert their effect independently of insulin  [18]. 
Apart from the most common side effects which include 
mild genital infections, urinary tract infections, and volume 
related adverse effects, their safety profile is considered sat-
isfactory  [19]. Importantly, SGLT2i show clinically relevant 
protective effect not only in T2D patients with CKD but also 
in non-diabetic population [20].

There is high inter-individual variability in response to the 
treatment with SGLT2 inhibitors. Several studies investigated 
the role of genetics in efficacy of these medications. Type 2 
of SGLT transporter is encoded by SCL5A2 gene located on 
the chromosome 16p11.2 [21]. Initial pharmacogenetic studies 
related to SGLT2 inhibitors explored mutations in this gene 

FIGURE 1. Benefits of treatment with SGLT2i and GLP-1RA based 
on their direct and indirect metabolic, cardiovascular, and renal 
effects [10]. SGLT2i: Sodium-glucose cotransporter-2 inhibitors, 
GLP-1RA: Glucagon-like peptide-1 receptor agonists.
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response assessed as difference in HbA1c and fasting glucose 
after 24 weeks of follow-up [28].

A recent study done by Drexel et al. [29] investigated the 
association between genetic variants in the SLC5A2 gene 
with T2D and the risk of cardiovascular disease. A total of 
1684 patients with risk of coronary artery disease (CAD) 
subjected to coronary angiography were genotyped for tag-
ging SNPs rs9934336, rs3813008, and rs3116150, in the SGLT2 
gene region. A total of 400 patients had T2D. The authors 
confirmed results from the previous study by Enigk et al. – 
the minor A allele in rs9934336 SNP was linked to decreased 
HbA1c, decreased fasting glucose and 120 minutes’ glucose 
values during OGTT. However, more importantly, this 
study found a significant association between the A allele of 
rs9934336 and reduced risk of T2D in both univariate and 
multivariate logistic regression statistical model, adjusted 
for sex, age, BMI, the presence of metabolic syndrome, and 
hypertension. No association was found between SLC5A2 
SNPs and the risk of CAD. In addition, the authors per-
formed a meta-analysis including results from the two pre-
vious studies [25,28]. Interestingly, by combining the studies’ 
results they confirmed that the minor allele of rs9934336 was 
significantly associated with reduced risk of T2D, although 
previous individual studies failed to demonstrate such asso-
ciation. In general, differences in patient characteristics and 
genetic background between separate studies could have led 
to different observations. Nevertheless, it is plausible that 
reduced function of SGLT2 can prevent hyperglycemia that, 
in the long-term, can protect from the development of T2D 
in an individual. Because of the noticed protective effect of 
rs9934336, but also the paucity of evidence regarding phar-
macological intervention with gliflozins in the setting of 
different genotypes for rs9934336, it would be pertinent to 
design further studies to explore potential pharmacogenetic 
aspect of this variant.

A small retrospective study was recently conducted to 
test the association between a polymorphism in the SLC5A2 
gene and development of macro- and microvascular com-
plications in Slovenian patients with T2D [30]. A total of 181 
patients with T2D were genotyped for SLC5A2 rs9934336 
G>A polymorphism and monitored for kidney function 
and diabetic retinopathy. Contrary to the previous research 
results [25,28], the study found that the carriers of at least one 
minor (A) allele of SLC5A2 rs9934336 had increased levels of 
fasting blood glucose and HbA1c. Furthermore, they found 
that SLC5A2 rs9934336 G>A polymorphism is significantly 
associated with the risk of diabetic retinopathy. The explana-
tion might be drawn from animal studies’ data which showed 
that SGLT2 is also expressed in retinal pericytes where it con-
trols glucose entering and therefore retinal energy metabo-
lism [31,32]. Genetic variations in the SGLT2 gene might thus 

alter the pericytes morphology and function and finally lead 
to complications.

The other obvious pharmacogenetic candidates are genes 
encoding enzymes responsible for the metabolism of glifloz-
ins. This drug class is extensively metabolized in the liver, and 
glucuronidation is the main metabolic pathway  [33]. There 
are only two studies published on the genetics of the UGT 
enzymes in relation to treatment with gliflozins, though 
there is a lack of evidence from typical pharmacogenetic 
studies. A study done by Francke et al. in 2015 [34] aimed 
to determine the main UGT enzymes responsible for the 
metabolism of canagliflozin. UGT1A9 and UGT2B4 were 
identified as the main enzymes that produce the two sub-
stantial O-glucuronide metabolites of canagliflozin in  vitro. 
Moreover, since the genes encoding UGT enzymes are 
genetically polymorphic, a pool pharmacogenomic analysis 
on 134 participants’ (mainly Caucasians) samples has been 
conducted [34]. Carriers of the UGT1A9*3 allele (rs72551330 
T>C; p.Met33Thr), which exhibit a reduction in glucuronida-
tion rate, had higher canagliflozin plasma exposure compared 
to non-carriers (Cmax,ss 11%; AUCƮ,ss 45% higher). In contrast, 
plasma concentrations of canagliflozin were not different 
between carriers of the wild-type allele and variant allele of 
UGT2B4 (UGT2B4*2), in spite of the latter having reduced 
levels of O-glucuronide metabolites. Nonetheless, the 
observed differences in canagliflozin concentrations in differ-
ent genotype groups for UGT1A9*3 are not considered clini-
cally relevant. Furthermore, there was no increase in overall 
adverse effects incidence in the carriers of the minor allele 
and they presented a rather small subgroup in the explored 
population. Furthermore, although the effect of UGT2B4*2 
genotype on altered metabolism of canagliflozin cannot be 
neglected, it is likely to be small.

The other research performed by Hoeben et al. [35] also 
focused on canagliflozin. It was based on the development 
and evaluation of a mathematical population pharmaco-
kinetic model that analyzed data from healthy volunteers 
and patients with T2D included in Phases I, II, and III trials. 
Different covariates were used to understand canagliflozin 
pharmacokinetics, detect statistically significant covariates in 
the model, and finally predict their clinical relevance. A total 
of 1616 subjects were included to gain relevant pharmacoki-
netic information. The polymorphism of the UGT1A9 gene 
(UGT1A9*3; rs72551330 T>C; p.Met33Thr) was added as a 
covariate since it could directly influence canagliflozin phar-
macokinetics. It was noticed that carriers of the UGT1A9*3 
allele had greater exposure to canagliflozin (dose-normalized 
AUC was 26% higher). Again, this subgroup of patients was 
small, so the model did not recognize the genetic polymor-
phism in the UGT enzyme as a factor requiring dose adjust-
ment during canagliflozin therapy.
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Obviously, there is not much evidence on the pharmaco-
genetics of gliflozin pharmacotherapy. However, since SGLT2 
inhibitors are a promising option in T2D treatment, it is of 
great importance to further target their pharmacogenetic 
aspects using properly-sized cohorts with adequate study 
designs [21]. The pharmacogenetic studies of SGLT2 inhibi-
tors are summarized in Table 1.

DPP-IV INHIBITORS (GLIPTINS)

Gliptins were first approved in 2006 when sitagliptin was 
introduced. Most of the drugs from this class are orally admin-
istered once or twice daily and are quickly absorbed.

Gliptins have a low potential for drug-drug interactions 
as they do not significantly induce or inhibit CYP enzymes 
nor they substantially attach to plasma proteins. Only 
saxagliptin is metabolized by CYP3A4/5. Other gliptins are 
usually excreted by kidneys except for linagliptin which is 
excreted by bile [36]. DPP-IV inhibitors act to re-establish 
the incretin effect which is impaired in patients with T2D, 
by targeting the enzyme dipeptidyl peptidase DPP-IV. This 
prevents quick degradation of the two incretin hormones, 
glucagon-like peptide-1 (GLP-1) and glucose-dependent 
insulinotropic polypeptide (GIP) and preserves physio-
logical levels of glucose. Inhibition of DPP-IV by gliptins 
results in two-three-fold elevation of endogenous incre-
tins [37]. Furthermore, gliptins exert a body weight neutral 
effect [38]. The expected efficacy of gliptins in regard to 
reducing HbA1c is rather modest, 0.5-0.8%, and is depen-
dent on HbA1c baseline level [39]. Patients usually tolerate 
well treatment with these medications [40]. A meta-analy-
sis from 2012 suggests that DPP-IV inhibitors are safe with 
regard to long-term use [41].

Pharmacogenetic aspects of incretin mimetics (DPP-IVi 
and GLP-1RA), as relatively recent drug classes, are so far 
sparingly explored with conclusions from the studies rather 
inconsistent [42]. Still, it is evident that response to DPP-IV 

inhibitors varies greatly among individuals and it is reason-
able to suspect that genetics plays a role in it. Gliptins are not 
extensively metabolized in the liver and thus genetic varia-
tions in the metabolic enzymes or hepatic drug transporters 
cannot be used as pharmacogenetic targets [43]. Therefore, 
it is appealing to investigate the effects of genetic variants 
in incretin receptors or in the genes that were previously 
connected to T2D or risk of T2D. Furthermore, other genes 
that might be linked to incretin mimetics response are dis-
covered usually through genome wide association studies 
(GWAS) [44,45].

Genes Coding Drug Targets of Gliptins

Since the mechanism of the pharmacological action 
of DPP-IV inhibitors is linked to the GLP-1R [46,47], the 
GLP-1R gene was a plausible target to explore. In an obser-
vational study of 264 patients with T2D on gliptin treat-
ment for 24 weeks, the effect of rs3765467 SNP (G>A; 
p.Arg131Gln) in GLP-1R was examined. The results suggest 
that this genetic variation in GLP-1R gene could influence 
the efficacy of DPP-IV inhibitors treatment. Patients who 
carried at least one minor allele (GA or AA genotype) had 
greater HbA1c reductions after treatment with DPP-IV 
inhibitors compared to homozygous wild-type allele car-
riers (GG). The difference was significant also in the mul-
tivariate analysis. However, due to the observational study 
design, the authors could not evaluate the effects of other 
factors that could affect glycemic status in the participants. 
Furthermore, these conclusions applied to Asians in which 
this SNP is relatively more frequently present compared to 
other populations [48].

One study investigated another polymorphism within 
GLPR-1 gene in relation to therapy with gliptins [49]. 
The GLP1R rs6923761 (Gly168Ser) and GIPR rs10423928 
(T>A) variants were genotyped in 140 patients with T2D. 
In addition to GLP-1R, the GIP-R is also the indirect tar-
get of gliptin pharmacological action. The main outcome 

TABLE 1. Pharmacogenetic studies of SGLT2 inhibitors

Gene Genetic variant (s) Study population Main outcome Reference

SLC5A2 rs9934336 G>A, rs3813008 
G>A, rs3116150 G>A, 
rs3116149 G>A, 
rs11646054 G>C

603 patients with T2D treated with 
empagliflozin in dose of 10 or 25 mg 
for 24 weeks as monotherapy or 
add-on therapy

Tested SNPs had no significant influence 
on response to empagliflozin treatment 
measured as difference in HbA1c 
and fasting glucose levels, (p>0.0025, 
Bonferroni-corrected level of significance)

Zimdahl et al. [28]

UGT1A9 rs72551330 T>C 
(UGT1A9*3; p.Met33Thr)

A pool pharmacogenomic analysis 
on 134 diabetic and non-diabetic 
participants who received 
canagliflozin in phase I studies

Carriers of the UGT1A9*3 allele had 1.45 
higher canagliflozin AUC compared to 
the wild-type allele carriers

Francke et al. [34]

rs72551330 T>C 
(UGT1A9*3; p.Met33Thr)

Analysis based on pharmacokinetic 
samples of 1616 diabetic and 
non-diabetic volunteers who received 
canagliflozin in dosage of 100 and 
300 mg, in Phases I, II, and III studies

Carriers of the UGT1A9*3 allele had 
1.26 (1.08-1.44) greater canagliflozin 
dose-normalized AUC compared to the 
wild-type allele carriers. Model showed 
that this does not require dose adjustment

Hoeben et al. [35]
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evaluated was the reduction in HbA1c levels after 6 months 
of treatment initiation. The results showed that the vari-
ant in the GLP-1R gene significantly affects therapy out-
come. Carriers of the minor allele had substantially lower 
HbA1c reduction compared to the wild-type allele carriers. 
According to the findings of in  vitro studies, the mecha-
nism of this reduced effect might be reduced expression of 
the receptor or decreased intracellular Ca2+ mobilization. 
This could further reduce GLP-1 stimulated insulin secre-
tion and thus explain the reduced gliptin effect [50]. It is 
important to note that the observed genotype-dependent 
effect was equal to the average effect of this drug class and 
thus this variant might represent a promising pharmacoge-
netic candidate [49].

Wilson et al. published the study which investigated the 
influence of genetic variability in the DPP-IV gene on the 
activity of DDP-IV enzyme during sitagliptin treatment [51]. 
In a double-blind, crossover fashion, 27 patients with T2D 
and 38 healthy controls were randomized to receive a single 
dose of 200 mg sitagliptin or repeated 100 mg dose of sita-
gliptin for 4 or 7 days or matching placebo. In a multivari-
ate analysis, among other factors, the authors found that the 
genotype of rs2909451 C>T variant in the DPP-IV gene was 
a predictor of DPP-IV activity during treatment with sita-
gliptin. Namely, rs2909451 TT genotype carriers had greater 
DPP-IV activity while they were on sitagliptin treatment. 
However, small sample size and no data from similar replica-
tion studies do not permit any definite conclusions regarding 
this finding.

Although it would be interesting to investigate the role of 
genetic variants in genes encoding other physiological DPP-4 
substrates, such as peptide tyrosine tyrosine (PYY), in DPP-IV 
response, no pharmacogenetic studies on this have been 
conducted.

Genes linked to T2D

One of the earliest studies that tackled genetics and 
gliptins’ treatment was done by t Hart et al. [8,52]. The study 
was based on earlier findings showing that GLP-1 induced 
insulin secretion is influenced by genetic variants [53]. The 
authors used fine-mapping approach to detect potential 
variants in non-diabetic subjects, followed by testing the 
effects of the detected SNPs on the treatment with gliptins 
in a total of 354 patients with T2D. The results showed that 
the G allele of the rs7202877 T>G SNP near CTRB1/2 was 
associated with the reduced effect of DPP-IV inhibitors. 
The carriers of the G allele had 0.51 ± 0.16% lower HbA1c 
response compared to the TT carriers. The minor G allele 
of the rs7202877 has been associated earlier with the pro-
tective role in T2D development [54]. This is in line with the 

increased GLP-1 stimulated insulin secretion in the G allele 
carriers [52]. Nevertheless, further well-powered studies 
are warranted to confirm and explain this pharmacogenetic 
finding.

CDK5 regulatory subunit associated protein 1-like 1 
(CDKAL1) gene encodes enzyme from the methylthio-
transferase family. Its exact role is still unknown; however, 
the polymorphisms of CDKAL1 gene are associated with 
the increased T2D risk, probably due to impaired insulin 
secretion [55]. Osada et al. investigated whether polymor-
phisms in the CDKAL1 gene (rs7754840 G>C and rs756992 
A>G) could influence therapeutic response to anti-diabetes 
agents [56]. They analyzed medical records of 798 patients 
with T2D to test if CDKAL1 genotype can influence ther-
apeutic response to the following drug classes: biguanides, 
sulfonylureas, DPP-IV inhibitors, thiazolidinediones, 
glinides, and GLP-1RA. Interestingly, the study found sig-
nificant differences in HbA1c reduction among genotypes 
only for DPP-IV inhibitors. Patients who carried T2D risk 
alleles (C for rs7754840 and G for rs756992) had signifi-
cantly greater HbA1c reduction after 3 months of treatment 
with DPP-IV inhibitors. The authors suggested that the 
mechanistic explanation may be the stimulation of insulin 
secretion by DPP-IV inhibitors, which might substitute the 
reduced ATP level in risk variant carriers, and thus lead to 
better response [56].

The KCNJ11 gene plays a role in insulin secretion by 
encoding a subunit of pancreatic ATP-dependent potas-
sium channel. Since incretin mimetics are insulin-stimulat-
ing drug classes, this gene may have importance as a part of 
the insulin signaling pathway. In a study that aimed to detect 
clinical and genetic factors that affect gliptin treatment 
response, variants rs2285676 C>T, rs5218 G>A, and rs5210 
G>A in the KCNJ11 gene were genotyped based on their 
earlier established link to diabetes. The study included 662 
patients with T2D, of whom 331 patients were treated with 
DPP-IV inhibitor and 331 patients with another antidiabetic 
drug. The treatment response was evaluated as on-treatment 
HbA1c equal to or lower than 7.0%. Authors found that the 
carriers of the KCNJ11 rs2285676 CC genotype had a 2-time 
higher chance of responding to gliptin treatment compared 
to other patients [57].

The KCNQ1 gene encodes a subunit of a ubiquitous 
voltage-gated potassium channel. It is expressed also in 
pancreatic beta cells and has a role in insulin secretion 
[58]. The KCNQ1 variants have been linked to the T2D risk 
[59,60]. A pilot pharmacogenetic study examined the influ-
ence of rs163184 T>G variant in this gene on the glycemic 
response to gliptin treatment in 137 patients. Sitagliptin or 
vildagliptin in a daily dose of 100 mg was added to met-
formin or metformin/sulfonylurea therapy. The patients 
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were followed for 6 months. The study found the associ-
ation of the minor G allele with poorer response to drugs 
from this class, namely, a smaller reduction in HbA1c. The 
observed difference between the TT and GG genotypes 
was 0.6% which could be clinically relevant if confirmed in 
larger cohorts [61].

Insulin secretion pathway also includes G-protein cou-
pled receptor 40 (GPR40) which is regulated through acti-
vation of protein kinase D 1 (PRKD1), a serine/threonine 
kinase. The impaired function of PRKD1 could affect beta 
cell insulin secretion and possibly gliptins efficacy [62,63]. 
In a GWAS study, 171 Taiwanese patients treated with 
DPP-IV inhibitors longer than 60 days, mostly as an add-on 
to other antidiabetic drugs, were included in the study. 
Patients were divided into response sensitive and resistant 
groups based on the change in HbA1c levels. A variant in 
the intron region of the PRKD1 gene (rs57803087 A>G) was 
significantly associated with gliptin therapeutic response in 
T2D. This finding supports the hypothesis that variants in 
the genes controlling beta cell function can affect the effi-
cacy of DPP-IV inhibitors. However, this study had limited 
statistical power [63].

The TCF7L2 gene rs7903146 C>T variant has been 
repeatedly and strongly connected to T2D risk [64-66], 
although the exact mechanism is not fully understood. It 
has been associated with proliferation and function of beta 
cells, insulin synthesis and secretion, and modulation of 
incretin action [67]. Interestingly, the rs7903146 T allele has 
been linked to impaired incretin-stimulated insulin secretion 
in some [68-70], but not all studies [71]. The impact of the 
rs7903146 C>T variant on the response to treatment with 
linagliptin was evaluated in 961 patients with T2D followed 
for 2 years [72]. No significant differences were observed 
between homozygous and heterozygous carriers of the wild-
type allele. However, the homozygous carriers of the minor 
allele (TT) had significantly reduced response measured as 
HbA1c reduction compared to patients with the CC geno-
type. Although the clinical significance of this association is 
yet to be proved, these results contribute to the role of T2D 
risk-genes in gliptin therapeutic response.

An interesting study has been conducted by Matsui 
et  al.  [73] which investigated variants in the human 
Interleukin-6 (IL-6) gene in relation to DPP-IV inhibitors 
response. IL-6 from muscle cells promotes GLP-1 secretion 
in animal models, similarly to gliptins. A total of 316 Japanese 
patients were genotyped for rs1800796 (G>C) and rs2097677 
(G>A) variants and followed for 3 or 4 months after initia-
tion of gliptin therapy. The response was defined as achiev-
ing HbA1c reduction of more than 0.2%. In a multivariate 
analysis, it was shown that the rs1800796 G/*-rs2097677 
A/* diplotype confers a reduced risk of not responding to 

DPP-IV inhibitors compared to the C/C-G/G diplotype, in 
patients who had moderate/high level of physical activity 
during the treatment. Further studies are required to con-
firm these results and explain the mechanism of this possible 
relationship.

Finally, since it is known from in vitro data that gliptins 
show protective effects against hepatic steatosis [74], Kan 
et al. attempted to link patatin-like phospholipase 3 gene 
(PNPLA3) rs738409 C>G genotype with the efficacy of 
alogliptin in NAFLD patients with T2D [75]. They genotyped 
41 T2D patients with established NAFLD and evaluated their 
clinical data retrospectively before and after the treatment 
with alogliptin. Statistically significant positive correlations 
between improvement in HbA1c and changes in AST and 
ALT levels were detected only in the carriers of the risk G 
allele. In addition, in the weight loss group, the G allele carri-
ers showed higher decrease in the levels of total cholesterol, 
triglycerides and hyaluronic acid. Therefore, the authors 
concluded that PNPLA3 rs738409 genotype could influence 
the therapeutic efficacy of alogliptin in the amelioration of 
NAFLD.

A summary of pharmacogenetic studies of DPP-IV inhib-
itors is given in Table 2.

GLP-1 receptor agonists

The GLP-1RA were designed to imitate GLP-1 activity 
with structures modified to resist quick metabolic degrada-
tion. At present, there are six GLP-1RA approved for clinical 
use as the subcutaneous formulations [76]. They lower blood 
glucose levels by increasing pancreatic insulin secretion and 
by suppressing the secretion of glucagon in a glucose-depen-
dent manner [77]. Controlled studies have shown that GLP-
1RA are highly efficacious, exert minimal risk of hypoglyce-
mia, and promote body weight loss [78]. Overall GLP-1RA are 
considered safe antidiabetic drugs in patients who cannot use 
metformin or when it is insufficient [79]. The most common 
adverse effects are gastrointestinal [80].

Studies have shown that long-acting liraglutide 
and semaglutide have cardioprotective benefits [81]. 
Interestingly, a large cohort study showed that genetics can 
have a role in this protective effect. Namely, rs10305492 
variant in the GLP1R gene was linked to a lower risk of 
heart disease, but also with the lower fasting glucose and 
reduced T2D risk [82]. In addition, two other more recent 
studies identified genetic variants that were associated with 
the CAD risk. A GWAS identified a variant rs57922 (C/C 
genotype) linked to higher GLP-1 secretion and CV benefits 
from intensive hypoglycemic treatment  [83]. Furthermore, 
among 11 tested tagging SNPs in the GLP1R gene in the 
Chinese Han population with T2D, it was shown that 
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carriers of the GG genotype of rs4714210 variant had lower 
CV risk compared to the AA carriers [84].

Several studies explored the impact of genetic variations 
on the pharmacological effect of GLP-1RA. Beinborn et al. 

were the first who discovered in vitro that a naturally occur-
ring variant in GLP-1R causes a significant reduction in recep-
tor function, and also reduced agonist responsiveness  [85]. 
More recently Lin et al. tried to explain unresponsiveness 

TABLE 2. Pharmacogenetic studies of DPP-IV inhibitors

Gene Genetic variant (s) Study population Main outcome Reference

GLP‑1R rs3765467 G>A 246 Asian patients with T2D 
on treatment with DPP-IV 
inhibitors for 24 weeks

Patients carrying at least one minor A allele had greater 
HbA1c reductions compared with GG carriers after 
treatment with DPP-IV inhibitors  
(1.3±1.1 vs. 0.9±1.2%; p=0.022)

Han et al. [48]

rs6923761G>A 
(p.Gly168Ser)

140 patients with T2D on 
treatment with sitagliptin or 
vildagliptin for 6 months

Homozygous carriers of the minor Ser allele of rs6923761 
had substantially lower HbA1c reduction compared with 
the wild-type allele carriers (0.12±0.23% vs. 0.80±0.09%, 
p=0.008)

Javorsky et al. [49]

DPP4 rs2909451 C>T A double-blind crossover study 
with 27 patients with T2D and 
38 healthy controls on treatment 
with sitagliptin

Carriers of rs2909451 TT genotype had greater DPP-IV 
activity during sitagliptin treatment compared to the 
CC and CT genotype groups (13.66±4.97, 7.76±3.55, 
and 7.99±2.89 nmol/mL/min, respectively, p=0.02) In 
the multivariate analysis, rs2909451 genotype remained 
significant predictor of DPP-IV activity during treatment 
with sitagliptin

Wilson et al. [51]

Near CTRB1/2 rs7202877 T>G 354 patients with T2D treated 
with DPP-IV inhibitors for at 
least 3 months

G allele was associated with reduced effect of DPP-IV 
inhibitors. The carriers of the G allele had 0.51±0.16% 
lower HbA1c response compared to the TT carriers 
(p=0.0015)

‘t Hart et al. [52]

CDKAL1 rs7754840 G>C 
rs756992 A>G

Analysis of medical records of 
798 patients with T2D to test 
effects of CDKAL1 genotypes 
on response to antidiabetic 
drugs

Carriers of T2D risk alleles (C for rs7754840 and G for 
rs756992) had significantly greater HbA1c reduction after 
3 months of treatment with DPP-IV inhibitors. In the 
multivariate analyses, reduction of HbA1c per C allele of 
rs7754840 and G allele of rs756992, were − 0.10% (p=0.02) 
and − 0.13% (p=0.0008), respectively

Osada et al. [56]

KCNJ11 rs2285676 C>T 331 patients with T2D receiving 
treatment with different 
DPP-IV inhibitors (sitagliptin, 
vildagliptin, and linagliptin) for 
at least 3 months

Carriers of the KCNJ11 rs2285676 CC genotype were 
more likely to achieve HbA1c equal to or < 7.0% during 
treatment with DPP-IV inhibitors (OR [95% CI] =2.0 
[1.03-3.77], p=0.042)

Jamaluddin et al. [57]

KCNQ1 rs163184 T>G 137 patients with T2D on 
treatment with sitagliptin/
vildagliptin (100 mg daily) added 
to metformin or metformin/
sulfonylurea therapy

The minor G allele was associated with lower HbA1c 
reduction in an additive genetic model (β [95% CI]=−0.30 
[−0.04-−0.55], p=0.022). The GG carriers had lower 
HbA1c reduction by 0.6% compared with the TT 
homozygotes (p=0.021)

Gotthardova et al. [61]

PRKD1 rs57803087 A>G A GWAS with 171 Taiwanese 
patients with T2D treated with 
DPP-IV inhibitors longer than 
60 days, mostly added to other 
antidiabetic drug(s)

rs57803087 was significantly associated with response to 
gliptin treatment (p=3.2×10-6) assessed as whether or not 
the target HbA1c was achieved

Liao et al. [63]

TCF7L2 rs7903146 C>T Analysis of 693 patients with 
T2D included in phase III trials 
treated with linagliptin

Homozygous carriers of the risk T allele had significantly 
lower HbA1c reduction compared to the CC carriers  
(<0.26%, p=0.0182)

Zimdahl et al. [72]

IL‑6 rs1800796 G>C 
rs2097677 G>A

316 Japanese patients with T2D 
treated with DPP-IV inhibitors 
for at least 3 months

Carriers of the diplotype rs1800796 G/*-rs2097677 A/* 
had reduced risk of not responding to gliptin treatment 
compared to the C/C-G/G carriers (reduction of 
HbA1c<0.2%), under certain level of physical activity 
(adjusted OR [95% CI] =0.15 (0.04-0.54), p=0.003)

Matsui et al. [73]

PNPLA3 rs738409 C>G 41 patients with T2D and 
NAFLD on therapy with 
alogliptin

In the carriers of the risk G allele, compared to the CC 
genotype carriers, a stronger positive correlation between 
HbA1c reduction and changes in AST (r=0.456, p=0.014 
vs. r=0.311, p=0.318) and ALT levels (r=0.520, p=0.001 vs. 
r=0.380, p=0.287) was found after alogliptin treatment. In 
the weight loss group, the G allele carriers had also greater 
reduction in the levels of total cholesterol (p=0.032), 
triglycerides (p=0.025) and hyaluronic acid (p=0.011)

Kan et al. [75]

GLP-1R: Glucagon-like peptide-1 receptor, DPP-IV: Dipeptidyl peptidase-4, T2D: Type 2 diabetes, CDKAL1: CDK5 regulatory subunit associated 
protein 1-like 1, PRKD1: Protein kinase D 1, IL-6: Interleukin-6, PNPLA3: Patatin-like phospholipase 3 gene, GWAS: Genome wide association 
studies
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to treatment with GLP-1RA and link it to the genetic vari-
ability in the GLP-1R gene. They have tested the hypothesis 
in 36 poorly controlled patients with T2D who were geno-
typed for 13 different variations. Patients received exenatide 
for 3 days after receiving subcutaneous insulin infusions for 
6 days. Although authors found a significant association of 
variants rs3765467 C>T and rs761386 C>T with the change 
in the standard deviation of plasma glucose levels during 
exenatide treatment, it became insignificant after multivari-
ate analysis [86]. Yu et al. also followed patients with T2D for 
response to exenatide treatment. A total of 285 overweight 
Chinese patients with T2D were recruited and genotyped 
for two common variants rs3765467 C>T and rs10305420 
(C>T; p.Pro7Leu). The treatment outcome was measured as 
the reduction in HbA1c and BMI after 6 months of treat-
ment. The study found that the minor allele of rs10305420 
was consistently associated with a decreased reduction in 
body weight and HbA1c during exenatide treatment, thus 
making this variant a potentially good pharmacogenetic 
marker especially in overweight diabetic patients [87]. 
Interestingly, one earlier published study investigated the 
same SNP (rs10305420 C>T; p.Pro7Leu) in obese women 
with polycystic ovary syndrome. They also found that car-
riers of the minor allele had a poorer response to liraglutide 
in terms of weight loss. Namely, they lost <5% of their initial 
body weight [88]. Another study explored pharmacogenetic 
aspects of liraglutide effects on metabolic traits and weight 
loss in relation to rs6923761 (G>A; p.Gly168Ser) polymor-
phism. It showed that the variant affected anthropometric 
parameters in overweight patients with T2D. The minor A 
allele was associated with a greater reduction in BMI, weight, 
and fat mass during liraglutide treatment [89].

Similarly, a recent study explored whether liraglu-
tide-driven prolongation of gastric emptying and weight 
loss are associated with GLP1R or TCF7L2 genetic variants. 
It was found that the minor A allele of rs6923761 variant 
was associated with slower gastric emptying after liraglu-
tide or exenatide treatment in obese individuals; however, it 
did not affect weight loss significantly [90]. Another recent 
study tested the association of 27 tagging SNPs in the GLP1R 
locus with gastric emptying rate variability in healthy volun-
teers. They found a significant effect of rs742764, rs2254336, 
rs9283907, rs2268657, and rs2254336 variants on gastric 
emptying rate; however, pharmacogenetic aspects were not 
investigated [91].

De Luis et al. investigated the effect of a common rs1049353 
(G>A) variant in the cannabinoid receptor 1 (CNR1) gene on 
treatment response in obese patients with T2D [92]. Genetic 
variants in the CNR1 gene are likely associated with variability 
in body weight and energy balance [93,94]. Anthropometric 

and metabolic parameters were assessed at baseline and after 
14 weeks of treatment with liraglutide. Although all patients 
lost weight during the treatment, only carriers of the minor 
rs1049353 A allele showed an improvement in insulin resis-
tance, whereas GG carriers had lower cholesterol levels after 
weight loss.

Several other studies have been conducted to investigate 
the pharmacogenetics of exenatide. Zhou et al. followed 101 
newly diagnosed patients with T2D for 48 weeks during 
treatment with exenatide [95]. They measured glycemic 
and beta cell function parameters, including fasting proin-
sulin/insulin (PI/I) ratio, in all patients. The patients were 
genotyped for rs1416406 variant in sortilin-related VPS10 
domain-containing receptor 1 gene (SORCS1). The previous 
studies indicated that SORCS1 gene is linked to T2D risk 
through impaired insulin secretion, as well as obesity [96,97]. 
All patients showed similar improvements in glycemic 
parameters; however, patients carrying the minor A allele 
had a lower reduction in PI/I ratio compared with the GG 
carriers. These results suggest that exenatide could be more 
beneficial in homozygous wild-type allele carriers early after 
diagnosis of T2D.

Genetic variability in TCF7L2 gene confers risk of T2D 
partially through incretin-mediated insulin secretion [68]. 
Ferreira et al. investigated the influence of rs7903146 variant 
in TCF7L2 gene on response to treatment with exenatide. 
A total of 56 patients with T2D underwent a 500-calorie 
mixed-meal test before and after treatment with exenatide 
for 8 weeks. Interestingly, only carriers of the minor T allele 
showed a reduction in insulin levels as a response to meal test 
after the treatment. Authors suggested that in some aspects T 
allele confers better response to GLP-1RA, possibly through 
enhanced insulin sensitivity [98].

Recently, one pharmacogenetic study was performed to 
test the pharmacogenetic effect of SGLT2i and GLP-1RA dual 
therapy in regard to body weight loss in individuals without 
T2D [99]. It has been shown that gliflozins and GLP-1RA 
provide a sustainable decrease in body weight and glycemic 
parameters when combined in therapy [100]. A total of 40 
obese participants without diabetes were included in the 
study and genotyped for seven SNPs that are known to affect 
the GLP-1-mediated pathway. Only the minor A allele of the 
rs10010131 in the wolframin (WFS1) gene was significantly 
associated with greater body weight loss. The A allele of the 
WFS1 gene was previously associated with a protective role 
against the development of T2D [101]. However, the study 
lacked monotherapy arms, thus it is difficult to make clear 
conclusions on the association of the tested variant and drug 
combination. A summary of pharmacogenetic studies of GLP-
1RA is shown in Table 3.
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CONCLUSION

It is evident that interest in investigation of the pharma-
cogenetic-based treatment continuously expands. This review 
presents the up-to-date knowledge of the genetic biomarkers 
that could influence the response to the new classes of antidia-
betic drugs. A considerable amount of data has been published 
in recent years targeting genetics of the glycemic response to 
SGLT2 inhibitors, DPP-IV inhibitors, and GLP-1RA. However, 
it is still evident that the lack of replication is the main chal-
lenge for the pharmacogenetic studies. Furthermore, a notable 
number of considered studies might have had a lack of proper 
study designs and power due to small sample sizes, which lead 
to some conflicting findings. Therefore, it seems essential to 
gain more information from larger controlled studies to con-
firm the present findings. Furthermore, it might be rational 

to conduct a meta-analysis to aggregate the effect of the vari-
ants that appeared in multiple independent studies. Finally, it 
might be worth considering the effects of possible gene-gene 
and drug-drug-gene interactions as well as other non-genetic 
determinants of response to these drug classes. This should be 
of great interest to scientists and clinicians since these three 
drug classes are the preferential treatment for T2D. Further 
larger studies would enable us to come closer to implement-
ing personalized treatment of patients with T2D and to sig-
nificantly improve clinical outcomes.
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