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INTRODUCTION

Renal cell carcinoma (RCC) is estimated to have caused 
approximately 76,080 new cases as well as 13,780 new deaths 
in the United States in 2021 alone [1]. Accounting for approxi-
mately 70-80% of RCC, clear cell renal cell carcinoma (ccRCC) 
comprises the majority of cancer deaths [2,3]. Due to the resis-
tance to radiotherapy and chemotherapy, the surgical resec-
tion is recommended as the primary therapy for ccRCC by the 

clinical guidelines [4,5]. Despite the tremendous progress in 
novel diagnostic tools and early surgical treatment, the cancer 
metastasis of ccRCC is still extremely common and 2 years sur-
vival rate of metastatic patients is <20% [6]. Therefore, new diag-
nostic markers and therapeutic targets are urgently required to 
understand the potential molecular mechanism and predict the 
disease occurrence, progression, and metastasis for these cases.

RNA-binding proteins (RBPs), also known as proteins 
interacting with different types of RNAs (ncRNAs, rRNAs, 
miRNAs, snRNAs, tRNAs, mRNAs, and snoRNAs), are rec-
ommended as pivotal post-transcriptional regulators not only 
regulating the spatiotemporal expression of genes but also 
modulating the disease pathogenesis [7]. Accounting for 7.5% 
of about 20,500 protein-coding genes in humans  [8], RBPs 
blind to RNA or constitute crucial components of ribonuc-
leoprotein (RNPs) to participate in RNA metabolism [9]. Till 
now, genome-wide screening of the human genome has iden-
tified more than 1500 RBPs that played an essential role in bio-
genesis, surveillance, transport, localization, and degradation 
of RNA in line with the genetic and biochemical studies [8,10-
12]. According to target RNA categorization, it is found that 
50% of RBPs involve pathways of mRNA metabolism, 11% of 
them establish ribosomal proteins, and the others associate 
with different kinds of non-coding RNA metabolism [8,13].
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ABSTRACT

The aim of this article was to construct an accurate prognostic model using RNA-binding proteins (RBPs) to predict overall survival (OS) for 
patients with clear cell renal cell carcinoma (ccRCC) as well as to reveal its associations with immune infiltration. Expression profiles based on 
RBPs and clinical follow-up parameters were obtained from the Cancer Genome Atlas (TCGA) and the ArrayExpress databases. Through uni-
variate COX and LASSO regression analyses, the RBPs based signature was developed. A total of six RBPs (CLK2, IGF2BP2, RNASE2, EZH2, 
PABPC1L, and RPL22L1) were eventually used to establish a prognostic signature. Based on this signature, ccRCC patients were classified into 
high-risk and low-risk subgroups and significant OS was obtained in both the internal and external datasets (p < 0.05). AUCs of its ROC curve 
were all above 0.70 and this signature was an independent prognostic factor of OS for ccRCC (p < 0.05). Nomograms were also constructed to 
visualize the relationships among individual predictors and 1-, 3-, and 5-year OS for ccRCC. Furthermore, the established RBPs based signature 
was strongly related to critical clinicopathologic characteristics such as grade (p = 8.921e−12), stage (p = 1.421e−11), M (p = 1.662e−05), and T 
stage (p = 7.907e−10). Moreover, 12 kinds of tumor-infiltrating immune cells were significantly linked to high-risk and low-risk groups classified 
by our constructed model (all p < 0.05). Our study successfully identified six RBPs as a robust prognostic signature in ccRCC by both external 
and internal verifications. Besides, our established model displayed significant associations with immune infiltration. In addition to original 
clinical parameters, our findings may further help clinicians in predicting patients’ survival status and creating individualized treatment plans.
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Therein, βi represented the regression coefficient of each 

gene, and expi represented the expression level of each gene.

Nomogram construction and validation

According to the independent prognostic clinical param-
eters and our established RBPs signature, a novel nomogram 
was conducted to forecast the likelihood of OS for ccRCC. To 
estimate the accuracy of the nomogram, ROC curves as well as 
the area under the ROC curve (AUC) was plotted. Moreover, 
calibration curves were generated from the “rms” package of R 
software, and applied to compare the observed and predicted 
results of this nomogram. Similarly, the methods were employed 
in the external validation set to verify these outcomes.

Verification of the mRNA expression and 
prognosis utilizing the ICGC, GEO datasets, and 
Kaplan–Meier plotter website

International Cancer Genome Consortium (ICGC) data-
set cohort (http://dcc.icgc.org) and two Gene Expression 
Omnibus (GEO) datasets (https://www.ncbi.nlm.nih.gov/
geo/; GSE14994 and GSE6344) were utilized to verify the 
mRNA expression of these six hub RBPs. Kaplan–Meier plot-
ter online tool (http://kmplot.com/analysis/) was employed 
to evaluate the prognosis of hub RBPs in ccRCC cohorts [21].

Quantitative real-time PCR (qRT-PCR)

We followed the manufacturer’s instructions and 
qRT-PCR was utilized to verify the mRNA expression 
of these six hub RBPs in four pairs of ccRCC tumor and 
adjacent normal kidney tissues acquired from Affiliated 
Hospital of Nantong University by means of StepOne 
Plus RT-PCR system (Applied Biosystems, Foster City, 
CA, USA). Our used primers were displayed as follow-
ing: Actin (F: 5’-ATGACTTAGTTGCGTTACACC-3’, R: 
5’-GACTTCCTGTAACAACGCATC-3’);

CLK2 (F: 5’-GGGGAGTTACCGTGAACACTA-3’, R: 
5’-CGTGTCCGGTCACTACTACTTG-3’);

EZH2 (F: 5’-GTACACGGGGATAGAGAATGTGG-3’, R: 
5’-GGTGGGCGGCTTTCTTTATCA-3’);

IGF2BP2 (F: 5’-AGCCTGTCACCATCCATGC-3’, R: 
5’-CTTCGGCTAGTTTGGTCTCATC-3’);

PABPC1L (F: 5’-AACATCTACGTGAAGAACCTCCC-3’, 
R: 5’-CACTCAGCATTTTCCCAAACTG -3’);

RNASE2 (F: 5’-TGTGGTAACCCAAATATGACCTG-3’, 
R: 5’-GGTCTCGTCGTTGATCTCTGT-3’);

RPL22L1 (F: 5’-GCAATTTCTACGGGAGAAGGTT-3’, 
R: 5’- ACTCGAAGCCAATCACGAAGA-3’);

With the discovery of non-coding RNAs and increasing 
understanding of post-transcriptional regulation in tumors, 
cancer-related RBPs are employed to construct highly intricate 
regulatory networks. Moreover, the disturbance of these net-
works is likely to have a relationship with primary carcinogenic 
hits, increasing aggressiveness, and accelerating progression [14]. 
Accumulating data have underscored that RBPs primarily alter 
various cancer-associated downstream targets to exert influ-
ence on carcinogenesis and development. Researches as UNR 
in melanoma [15], LARP1 in ovarian cancer (OC) [16], IMP3 in 
leukemia [17], QKI in kidney cancer [18], LIN28B as well as MSI 
in colon cancer [19], and IMP2 in glioma [20] have been applied 
to disclose the RBP cancer-specific post-transcriptional net-
works. However, the roles of most RBPs have not yet been found 
in tumors, and the functions of RBPs in the progress of cancer 
remain relatively unexplored. In the current research, our efforts 
were made to establish a RBPs based signature to predict overall 
survival (OS) for ccRCC. Our results were anticipated to help 
clinician predict patients’ survival status and to promote the spe-
cific individualized treatment than original clinical parameters.

MATERIALS AND METHODS

Identification of expression profiles and 
differentially expressed RBPs (DERBPs) from 
public databases

Expression profiles based on RBPs together with clinical fol-
low-up parameters were obtained from The Cancer Genome 
Atlas (TCGA, https://portal.gdc.cancer.gov/). As detailed in 
Supplementary Table S1, the census of human RBPs was obtained 
from the article of “A census of human RNA-binding proteins” 
in Nature Reviews Genetics [8]. The raw data were pre-handled 
by the “limma” package of R software and standardized by log2 
transformation. In addition, to screen DERBPs between ccRCC 
tumor tissues and adjacent normal kidney tissues, log2|fold 
change (FC)| ≥1 and false discovery rate (FDR)<0.05 were set 
as the cutoff criterion. Moreover, the external validation cohort 
(E-MTAB-1980 dataset) was obtained from the ArrayExpress 
dataset (https://www.ebi.ac.uk/arrayexpress/).

Establishment and validation of the risk score 
model

To explore the associations between OS and DERBPs in 
the training database and testing database, the univariate Cox 
regression analysis was applied and p = 0.05 was set as the cut-
off value. Then, LASSO Cox regression method was utilized 
to establish the model based on prognostic RBPs. LASSO 
regression could fit the generalized linear model, contributing 
to variable selection and regularization. Subsequently, the risk 
score algorithm was constructed as following:
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RESULTS

RBPs based expression profiles and differently 
expressed RBPs identification

The whole workflow of this study is shown in 
Supplementary Figure S1. RNA sequencing data of ccRCC 
and the clinicopathological characteristics including 72 adja-
cent normal renal tissues and 539 ccRCC tumor samples, were 
obtained from the TCGA cohort. When selecting |log2(FC)|>1 
and FDR<0.05 as the threshold, 125 differently expressed RBPs 
were screened out from a list of 1542 RBPs, including 38 down-
regulated and 87 upregulated RBPs (Supplement Table S2). The 
expression heatmap of 125 differently expressed RBPs and the 
volcano plot of all RBPs are demonstrated in Figure 1A and 1B.

Prognostic model (risk score) construction

Based on the univariate Cox regression analysis, 54 can-
didate RBPs were identified (Figure  2A). Then, the LASSO 
Cox regression model was performed and six vital prognostic 
RBPs including CLK2, IGF2BP2, RNASE2, EZH2, PABPC1L, 
and RPL22L1 were finally selected (Figure 2B-C and Table 1). 
As a result, a six prognostic RBPs signature was constructed 
and the risk score of each sample was calculated: Risk 
score = (0.01812 × ExpCLK2) + (0.02605 × ExpIGF2BP2) + 
(0.04622 × ExpRNASE2) + (0.05813 × ExpEZH2) + (0.01903 × 
ExpPABPC1L) + (0.01191 × ExpRPL22L1).

Evaluation, external and internal verification of six 
RBPs based signature (risk score)

Based on six RBPs established signature (risk score), 
patients with ccRCC were classified into two groups (high- and 

Validation of the protein expression utilizing the 
Human Protein Atlas (HPA) database and CPTAP 
analysis

Using the HPA online database (http://www.proteinat-
las.org/), the protein expression of the hub RBPs in ccRCC 
was validated by immunohistochemical (IHC) staining. As 
detailed in HPA database, CLK2 was stained by HPA055366 
antibody in IHC; EZH2 was stained by CAB009589 anti-
body in IHC; IGF2BP2 was stained by HPA035145 antibody 
in IHC; RNASE2 was stained by HPA044983 antibody in 
IHC; RPL22L1 was stained by HPA056207 antibody in 
IHC; whereas PABPC1L immunohistochemistry out-
comes had not been provided yet. Scale bar for each IHC 
picture was 200 um. We also utilized the UALCAN web-
site (http://ualcan.path.uab.edu/analysis-prot.html) to 
validate the protein of the hub RBPs expression between 
the primary ccRCC tumor and normal tissues by Clinical 
Proteomic Tumor Analysis Consortium (CPTAC) dataset 
analysis [22].

Tumor-infiltrating immune cells (TIICs) estimation

The expressions of TIICs in every ccRCC sample from the 
TCGA dataset were calculated as previously described [23]. 
Based on our established model, ccRCC patients were divided 
into a high- and low-risk group. Through R packages, we could 
explore whether or not TIICs were linked to these two groups, 
under the threshold of p < 0.05.

Statistical analysis

Statistical analysis was accomplished by utilizing the R 
software 3.6.3. Student’s t-test or Wilcoxon rank-sum test 
was utilized for continuous variables and Chi-squared test 
or Fisher’s exact test was employed for categorical variables. 
Kaplan–Meier survival curves as well as the log-rank test were 
implemented utilizing the “survival” package of R software. 
The ROC curves were plotted using the R package “survival 
ROC.” For the whole statistical analyses, p values were two 
sided and its values below 0.05 were regarded to be signifi-
cantly different.

Availability of data and material

RNA sequencing data of ccRCC, together with clinical 
follow-up parameters, were got from the Cancer Genome 
Atlas (TCGA) database and the ArrayExpress database 
(E-MTAB-1980). ICGC dataset and two GEO datasets 
(GSE14994 and GSE6344) were utilized to verify the mRNA 
expression of these six hub RBPs.

TABLE 1. Coefficients of these six key prognostic RBPs

Gene Coefficients
CLK2 0.018122682
IGF2BP2 0.026048548
RNASE2 0.046223445
EZH2 0.058125193
PABPC1L 0.019031592
RPL22L1 0.011911132

RBPs: RNA-binding proteins

TABLE 2. External and internal verification datasets of 1-year, 
3-year, and 5-year ROC

Datasets 1-year ROC 3-year ROC 5-year ROC
The whole training dataset 
(TCGA)

0.724 0.716 0.741

The external validation 
dataset (ArrayExpress)

0.790 0.830 0.862

The internal validation 
dataset 1 (test 1)

0.705 0.723 0.745

The internal validation 
dataset 2 (test 2)

0.742 0.710 0.738
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FIGURE 1. One hundred and twenty-five differentially expressed RNA-binding proteins get from TCGA ccRCC cohort; (A) heatmap; 
N=adjacent normal renal tissues; T=ccRCC tumor tissues; scale=FPKM values of gene expression; (B) volcano plot.

A B

FIGURE 2. Prognostic model index (risk score) construction based on univariate Cox regression analysis and LASSO analysis; (A) 
the forest plot of 54 differentially expressed RNA-binding proteins (RBPs) screened out by univariate Cox regression; (B-C) LASSO 
coefficient profiles of the prognostic RBPs.

A B
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low-risk groups), and KM survival analysis shed light on that 
patients with low risks had a much better OS than those with 
high risks (p = 2.187e−12, Figure  3A). To better evaluate our 
established model, the ROC curve and its AUC were further 
analyzed. Our results indicated that 1-, 3-, and 5-year AUC val-
ues were 0.724, 0.716, and 0.741, separately, showing superior 
predictive veracity of patients’ survival results (Figure  3B-D 
and Table  2). In addition, when the risk score increased, 
patients would have more dead events (Figure 3I).

The external validation database (E-MTAB-1980, n = 99), 
the internal validation dataset 1 (n = 264), and the internal val-
idation dataset 2 (n = 261) were utilized as validation databases 
to verify our signature. In terms of Kaplan–Meier survival 
analysis, all three validation sets showed similar outcomes (the 
external validation dataset: p = 1.067e−03; the internal valida-
tion dataset 1: p = 5.082e−06; and the internal validation dataset 
2: p = 3.507e−07; Figure 3E, Figure 4A and E). ROC analysis dis-
played that the AUC for 1-year, 3-year, and 5-year OS of these 
three databases were all above 0.70 (Figure 3F-H, Figure 4B-D, 

Figure 4F-H, Table 2). Figure 3J and Figure 4I-J displayed that 
patients would have more dead events, when the risk score 
increased. In a word, our established model possessed superior 
sensitivity and specificity in predicting OS for ccRCC.

Our established six RBPs based signature could 
serve as an independent prognostic parameter 
for OS

In the univariate Cox analysis, the high-risk groups 
revealed a 5.411-fold, 4.453-fold, 6.776-fold, and 57.907-fold 
increased risk of death than those in the low-risk groups (the 
whole training dataset (TCGA): 95% CI 3.897-7.512; the inter-
nal validation dataset 1: 95% CI 2.824-7.023; the internal valida-
tion dataset 2: 95% CI 4.142-11.084; and the external validation 
dataset: 95% CI 10.449-320.911, all p < 0.001; respectively). By 
means of multivariate Cox analysis, the six RBPs based model 
was strongly associated with OS for patients with ccRCC in 
the whole training database: HR = 3.417, 95% CI 2.259-5.168; 

FIGURE 3. Evaluation and external verification of our established signature; (A) Kaplan–Meier survival curves of OS in the 
whole training dataset (TCGA); (B) 1-year ROC in the whole training dataset (TCGA); (C) 3-year ROC; (D) 5-year ROC; (E) Kaplan–
Meier survival curves of OS in the external validation dataset (ArrayExpress); (F) 1-year ROC in the external validation dataset 
(ArrayExpress); (G) 3-year ROC; (H) 5-year ROC; (I-J) the distribution of risk scores for each sample and patients’ survival status 
in the whole training dataset (TCGA) and the external validation dataset (ArrayExpress); therein, A-D and I represented the whole 
training dataset (TCGA); E-H and J represented the external validation dataset (ArrayExpress).
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TABLE 3. Univariate and multivariate Cox regression analysis of external and internal verification datasets for overall survival (OS)

The whole training dataset (TCGA) Univariate Cox regression analysis Multivariate Cox regression analysis
ID HR HR.95L HR.95H p-value HR HR.95L HR.95H p-value
Age 1.030913 1.017301 1.044707 7.14E-06 1.035101 1.020556 1.049854 1.77E-06
Gender 0.939895 0.682968 1.293475 0.703593641 1.033268 0.738757 1.445188 0.848385584
Race 1.175718 0.705799 1.958508 0.534112006 1.275535 0.766027 2.123932 0.349558444
Grade 1.971561 1.640971 2.368751 4.20E-13 1.28167 1.017062 1.615121 0.03543498
Stage 1.880446 1.664529 2.12437 3.38E-24 1.803986 1.245201 2.613526 0.00181205
T 2.043146 1.72421 2.421079 1.57E-16 1.002533 0.757815 1.326277 0.985863735
M 2.135679 1.688608 2.701115 2.42E-10 0.742863 0.374737 1.472621 0.394560117
N 0.862088 0.737405 1.007852 0.062626764 0.869547 0.737792 1.024831 0.095437453
Risk score 5.410606 3.897003 7.512095 6.50E-24 3.417165 2.259309 5.168402 5.85E-09

The internal validation dataset 1 (test 1) Univariate Cox regression analysis Multivariate Cox regression analysis
ID HR HR.95L HR.95H p-value HR HR.95L HR.95H p-value
Age 1.042564 1.021728 1.063825 5.19E-05 1.047857 1.025271 1.07094 2.61E-05
Gender 1.010839 0.637407 1.603052 0.963450866 1.216074 0.73948 1.999832 0.440825876
Race 1.149275 0.577583 2.286829 0.691857074 1.329803 0.669684 2.640615 0.41542614
Grade 1.978801 1.495423 2.618424 1.79E-06 1.347296 0.936298 1.938707 0.108390345
Stage 1.736677 1.454669 2.073355 1.03E-09 1.653178 0.979126 2.791262 0.059968007
T 1.902481 1.497071 2.417677 1.44E-07 0.979773 0.648727 1.479753 0.922618285
M 1.883329 1.319557 2.687969 0.00048717 0.631105 0.239803 1.66092 0.351185025
N 0.814787 0.65018 1.021068 0.075257409 0.811419 0.634599 1.037506 0.095641512
Risk score 4.453297 2.823815 7.023073 1.31E-10 3.376678 1.896403 6.012412 3.56E-05

The internal validation dataset 2 (test 2) Univariate Cox regression analysis Multivariate Cox regression analysis
ID HR HR.95L HR.95H p-value HR HR.95L HR.95H p-value
Age 1.021395 1.00335 1.039765 0.01992815 1.032345 1.011747 1.053361 0.001963071
Gender 0.901166 0.578116 1.404734 0.645895533 0.920735 0.574228 1.476335 0.731736537
Race 1.194868 0.558591 2.55591 0.646298532 1.151368 0.508761 2.605642 0.735174194
Grade 1.980887 1.558245 2.518162 2.37E-08 1.312002 0.963009 1.78747 0.085237027
Stage 2.015703 1.700396 2.38948 6.66E-16 2.147403 1.169713 3.942286 0.013674269
T 2.152136 1.692616 2.736408 3.99E-10 0.99652 0.659971 1.504691 0.986769909
M 2.348955 1.713978 3.219172 1.09E-07 0.684919 0.225055 2.084439 0.505106802
N 0.908011 0.729234 1.130616 0.388358571 0.891494 0.708698 1.121439 0.326580501
Risk score 6.776 4.142479 11.08374 2.52E-14 3.584984 1.7738 7.245523 0.000375966

The external validation dataset (ArrayExpress) Univariate Cox regression analysis Multivariate Cox regression analysis
ID HR HR.95L HR.95H P value HR HR.95L HR.95H pvalue
Age 1.043727 1.001971 1.087222 0.03992667 1.0259 0.981825 1.071953 0.253746248
Gender 2.265277 0.672896 7.62596 0.186735984 2.612452 0.665756 10.25136 0.168601041
Grade 2.981514 1.670809 5.320429 0.000218 1.498271 0.670429 3.348328 0.324411222
T 2.564016 1.675159 3.92451 1.45E-05 1.615248 0.984168 2.650997 0.057850092
N 3.866228 2.31875 6.446455 2.17E-07 2.385944 1.245581 4.570339 0.00873782
M 6.113103 2.570636 14.53727 4.20E-05 3.682659 1.382799 9.807631 0.0090944
Risk score 57.90725 10.44915 320.9113 3.39E-06 2.054828 0.14946 28.25042 0.590182717

in the internal validation dataset 1: HR = 3.377, 95% CI 1.896-
6.012; and in the internal validation dataset 2: HR = 3.585, 95% 
CI 1.774-7.246, all p < 0.001; except for the external validation 
dataset: HR = 2.055, 95% CI 0.149-28.250; p = 0.590) (Table 3).

Construction of the novel nomogram on the basis 
of clinical characteristics and the signature

To provide a quantitative method to predict the ccRCC 
patients’ prognosis in clinical trials, we established a compound 
nomogram in both the TCGA and ArrayExpress databases. Our 

outcomes presented that this novel nomogram could better pre-
dict OS of patients (Figure 5A) and its 1-year, 3-year, and 5-year 
AUC values and C-index in the TCGA dataset were 0.842, 0.806, 
0.788, and 0.79, respectively, showing an excellent prognostic abil-
ity (Table 4 and Supplement Figure S2). In the calibration curve, 
the diagonal line represented the most ideal outcome; the closer 
the predictive values were to the diagonal line, the more consistent 
they were with the actual situation. Calibration plots of this nomo-
gram revealed that the predictive values were significantly similar 
to the ideal ones (Figure 5C). We also built another prognostic 
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nomogram in the ArrayExpress dataset (E-MTAB-1980) as an 
external validation set to verify the previous results (Figure 5B). 
Its 1-, 3-, and 5-year AUC values and C-index in the ArrayExpress 
dataset were 0.895, 0.897, 0.861, and 0.872, separately, showing 
a better predictive accuracy in OS (Table  4 and Supplement 
Figure S2). Calibration plot also displayed the satisfactory confor-
mity between the predicted and actual values (Figure 5D).

Association between these six prognostic RBPs, 
risk score, and clinicopathologic characteristics

The relationships between clinicopathologic characteristics, 
risk score, and six prognostic RBPs were explored. Our results 

revealed that the six RBPs based signature (risk score) was firmly 
related to grade (p = 8.921e−12), tumor stage (p = 1.421e−11), M 
stage (p = 1.662e−05), and T stage (p = 7.907e−10) (Supplement 
Figure S3). In addition, the correlation between six hub RBPs 
and clinical features was also analyzed (Table 5).

Validation of the mRNA expression and the 
prognosis of six RBPs in ccRCC

ICGC dataset (http://dcc.icgc.org), containing 45 normal 
renal and 91 tumor samples, was applied to verify the mRNA 
expression of these six RBPs (CLK2, EZH2, IGF2BP2, PABPC1L, 
RNASE2, and RPL22L1). As displayed in Figure 6A-F, they were 
differentially expressed in tumors compared with normal tis-
sues (all p < 0.001). Results from GSE14994 and GSE6344 data-
sets showed that EZH2, IGF2BP2, and RNASE2 had significant 
expressions in tumors compared with normal tissues, while the 
others did not (all p < 0.01; Figure 6G-L). KM plotter displayed 
that six RBPs were remarkably related to OS in ccRCC patients 

TABLE 4. 1-year, 3-year, and 5-year ROC and C-index of 
nomogram for in TCGA and ArrayExpress datasets

ROC 1-year ROC 3-year ROC 5-year ROC C-index
TCGA cohort 0.842 0.806 0.788 0.790
ArrayExpress 
cohort

0.895 0.897 0.861 0.872

FIGURE 4. Internal verification of six RNA-binding proteins established signature; (A) Kaplan–Meier survival curves of OS in the 
internal validation dataset 1 (test 1); (B) 1-year ROC in the internal validation dataset 1 (test 1); (C) 3-year ROC; (D) 5-year ROC; (E) 
Kaplan–Meier survival curves of OS in the internal validation dataset 2 (test 2); (F) 1-year ROC in the internal validation dataset 
2 (test 2); (G) 3-year ROC; (H) 5-year ROC; (I-J) the distribution of risk scores for each sample and patients’ survival status in the 
internal validation dataset 1 (test 1) and in the internal validation dataset 2 (test 2); therein, A-D and I represented the internal 
validation dataset 1 (test 1); E-H and J represented the internal validation dataset 2 (test 2).
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(all p < 0.001; Figure  6M-R). qRT-PCR was employed to vali-
date the mRNA expression of these six hub RBPs in four pairs 
of ccRCC tumor samples and adjacent normal kidney tissues. 
Based on our results, only RPL22L1 showed significant results 
(p = 0.0067). p values of CLK2, EZH2, IGF2BP2, PABPC1L, and 
RNASE2 were all above 0.054. This might be due to the rela-
tively small number of samples (Figure 6S-X).

Verification of the protein expression of the critical 
RBPs in ccRCC

Due to the absence of PABPC1L protein in CPTAC and 
HPA datasets, only five proteins of CLK2, EZH2, IGF2BP2, 

RNASE2, and RPL22L1 were analyzed. As presented in 
Figure 7A-E, these RBPs were differently expressed in ccRCC 
tumor samples compared with adjacent normal kidney tissues 
(all p < 0.001), except for EZH2 (p = 0.962). Besides, immu-
nohistochemistry outcomes were used to validate the pro-
tein expression of these hub RBPs (Figure  7F-J). Antibody 
HPA055366 staining for CLK2 in normal kidney tissue 
was medium, whereas it was low in tumor tissue. Antibody 
CAB009589 staining for EZH2 in normal kidney tissue was 
not detected, whereas it was low in tumor tissue. Antibody 
HPA035145 staining for IGF2BP2 in normal kidney tissue 
was low, whereas it was medium in tumor tissue. Antibody 

TABLE 5. Clinical correlation analysis between these six prognostic RBPs, our established risk score and clinical features

ID Age Gender Race Grade Stage T M N
CLK2 −0.752 (0.453) 1.485 (0.138) 6.75 (0.034) −1.75 (0.081) −3.094 (0.002) −2.643 (0.009) −2.764 (0.006) 0.077 (0.939)
IGF2BP2 −0.828 (0.409) −0.696 (0.487) 6.183 (0.045) −3.653 (2.911e−04) −2.895 (0.004) −3.077 (0.002) −2.657 (0.009) 0.41 (0.682)
RNASE2 0.455 (0.649) −1.429 (0.154) 9.985 (0.007) −4.582 (6.12e-06) −4.023 (7.549e-05) −3.758 (2.187e-04) −1.928 (0.056) −0.386 (0.700)
EZH2 −0.157 (0.875) −0.904 (0.366) 5.34 (0.069) −5.535 (5.193e-08) −5.348 (1.709e-07) −4.874 (1.783e-06) −3.901 (1.534e-04) 1.27 (0.205)
PABPC1L −1.316 (0.189) 1.084 (0.279) 6.654 (0.036) −4.553 (6.87e-06) −4.048 (6.62e-05) −3.817 (1.699e-04) −3.142 (0.002) −0.08 (0.936)
RPL22L1 −0.63 (0.529) −1.81 (0.071) 1.338 (0.512) −4.974 (9.155e-07) −5.45 (1.035e-07) −4.479 (1.107e-05) −3.259 (0.001) 0.623 (0.534)
Risk score −0.927 (0.355) −0.431 (0.667) 2.07 (0.355) −7.014 (8.921e-12) −7.028 (1.421e-11) −6.381 (7.907e-10) −4.48 (1.662e-05) 0.349 (0.728)

The data in the brackets represent the p-value. The data outside the brackets represent the correlation coefficient. RBPs: RNA-binding proteins

FIGURE 5. Nomogram and calibration plots in both TCGA and ArrayExpress databases; (A-B) nomogram in the TCGA and 
ArrayExpress databases, respectively; (C-D) calibration plot of 1-, 3-, and 5-year OS prediction in the TCGA and ArrayExpress 
databases, separately.
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HPA044983 staining for RNASE2 in normal kidney tissue 
was medium, whereas it was not detected in tumor tissue. 
Antibody HPA056207 staining for RPL22L1 in normal kidney 
tissue was medium, whereas it was low in tumor tissue. Scale 
bar for each IHC picture was 200 um.

Clinical factors stratified by our established 
signature for OS

According to our established model, ccRCC patients were 
further divided into subgroups for five clinical factors (stage, 
grade, N, T, and M). Our results shed light on that except 
for N1 (p = 0.809), our signature was able to predict OS in 
Grade 1-2, Grade 3-4, Stage III-IV, Stage I-II, T3-4 stage, T1-2 
stage, N0, M0, and M1 ccRCC patients (all p < 0.05; Figure 8).

TIICs stratified by our established model

As detailed in Figure 9A-L, 12 out of 21 TIICs (dendritic 
cells resting, B cells naive, macrophages M2, macrophages 
M0, monocytes, mast cells resting, T cells CD4 memory acti-
vated, plasma cells, T cells CD8, T cells CD4 memory resting, 

T cells regulatory (Tregs), and T cells follicular helper) were 
all significantly stratified by our established model (all p < 
0.05). Figure 9M summarizes all of the 21 TIICs in high-risk 
and low-risk groups stratified by our established model by 
radar chart.

DISCUSSION

In line with the latest cancer statistics reported from the 
World Health Organization, the occurrence rate of RCC 
dramatically increased over the past few decades and it was 
estimated to have over 140,000 ccRCC-related death events 
per year [24]. Therefore, it was important to identify reliable 
biomarkers for better predicting ccRCC patients’ survival. 
With the development of cancer precision medicine, a variety 
of signatures or biomarkers have been established for predict-
ing prognosis and therapeutic benefits. Studies illustrated that 
under the guidance of biomarkers, response rates seen with 
targeted agents have reached approximately 30%, which were 
much higher than that of chemotherapy [25]. As reported, 
RBPs dysregulation happens in the genesis and development 

FIGURE 6. Validation of the mRNA expression and prognostic value of six critical RNA-binding proteins (RBPs) in ccRCC; boxplot of 
six critical RBPs mRNA expression in ICGC dataset (N=45; T=91); (A) CLK2; (B) EZH2; (C) IGF2BP2; (D) PABPC1L; (E) RNASE2; (F) 
RPL22L1; boxplot of six critical RBPs mRNA expression in GSE14994 dataset (N=11; T=59) and GSE6344 dataset (N=10; T=10); 
(G) CLK2, (H) EZH2, (I) IGF2BP2, (J) PABPC1L, (K) RNASE2, (L) RPL22L1; Scale=Gene count values; Kaplan–Meier plotter of (M) 
CLK2, (N) EZH2, (O) IGF2BP2, (P) PABPC1L, (Q) RNASE2, (R) RPL22L1; quantitative real-time PCR validation of (S) CLK2, (T) EZH2, 
(U) IGF2BP2, (V) PABPC1L, (W) RNASE2, (X) RPL22L1 mRNA expressions in clinical ccRCC samples (N=4; T=4).
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FIGURE 7. Verification of the protein expression of the critical RNA-binding proteins (RBPs) in ccRCC; boxplot of six critical RBPs 
protein expression by Clinical Proteomic Tumor Analysis Consortium analysis (A) CLK2; (B) EZH2; (C) IGF2BP2; (D) RNASE2; 
(E) RPL22L1; immunohistochemistry outcomes from Human Protein Atlas database (F) CLK2; (G) EZH2; (H) IGF2BP2; (I) RNASE2; 
(J) RPL22L1; scale bar=200 um; ***p < 0.001.
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FIGURE 8. Clinicopathological parameters stratified by risk score for OS; (A) Grade 1-2 stratified by risk score for OS; (B) Grade 3-4; 
(C) Stage I-II; (D) Stage III-IV; (E) T1-2 stage; (F) T3-4 stage; (G) M0; (H) M1; (I) N0; (J) N1.
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of various malignant tumors [14,26,27]. Nevertheless, piv-
otal functional roles of most RBPs in human cancer remain 
unclear [8,14]. Moreover, few studies focused on the roles of 
RBPs in ccRCC’s survival prediction. Based on the ccRCC data 
from the TCGA set, 125 differently expressed RBPs between 
kidney and ccRCC tissues were selected. In addition, we 
adopted univariate COX and LASSO regression analysis to 
identify hub RBP genes and to build a prognostic signature. 
This work might contribute to identifying new effective bio-
markers for the prognosis of ccRCC.

By means of univariate Cox and LASSO regression anal-
ysis, we singled out six hub RBPs (CLK2, IGF2BP2, RNASE2, 
EZH2, PABPC1L, and RPL22L1). Several studies demonstrated 
these RBPs played important roles in tumorigenesis and devel-
opment, even in kidney cancer [14,28,29]. CLK2 could serve 
as an oncogene in breast cancer, whereas downregulation of 
CLK2 could suppress tumor growth [30]. Furthermore, CLK2 
acted a pivotal part in the control of cell cycle and prognosis 

of glioblastoma by regulating FOXO3a/p27 pathways [31]. As 
for IGF2BP2, it was reported that IGF2BP2 was differentially 
expressed in pancreatic cancer, and its upregulation promotes 
cancer cells’ growth through stimulating the PI3K/Akt path-
way [32]. Wan et al. figured out that RNASE2 was identified 
as the valuable prognostic predictor in ccRCC patients and 
utilized to explore the occurrence mechanisms of renal carci-
noma and to design individualized treatments for patients [33]. 
EZH2, namely, the enzymatic subunit of polycomb repressive 
complex 2 [34,35], has been found to be of great importance 
in various cancers, including bladder cancer, breast cancer, 
prostate cancer, and so on [36-38]. Due to the ability of sup-
pressing its enzymatic function, EZH2 became an anti-can-
cer therapy target and might bring a substantial therapeutic 
advance in clinical trials [39,40]. Regarding PABPC1L, Wu 
et al. demonstrated that PABPC1L suppressed migration and 
cell proliferation in colorectal cancer (CRC), and the expres-
sion of PABPC1L in CRC was highly associated with age, 

FIGURE 9. TIICs stratified by our established model; (A) B cells naive distribution; (B) dendritic cells resting; (C) macrophages M0; 
(D) macrophages M2; (E) mast cells resting; (F) monocytes; (G) plasma cells; (H) T cells CD4 memory activated; (I) T cells CD4 
memory resting; (J) T cells CD8; (K) T cells follicular helper; (L) T cells regulatory (Tregs); (M) radar chart.
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pathologic node, pathologic metastasis, pathologic stage, and 
death [41]. With regard to RPL22L1, Wu et al. demonstrated 
that RPL22L1 induced epithelial-to-mesenchymal transition 
in OC and was critical in triggering cell metastasis and main-
taining the aggressive phenotype of OC [42].

Next, we established the six RBPs signatures (risk score). 
The survival curves revealed that ccRCC patients in high-risk 
groups were associated with poor OS in the training cohort 
(TCGA) and three validation cohorts (E-MTAB-1980; inter-
nal validation cohort dataset 1; and internal validation cohort 
dataset 2). ROC analysis displayed that our six RBP genes 
based signature had a moderate performance for predicting 
ccRCC patients’ OS. Moreover, our established signature 
could be an independent prognostic parameter of OS for 
ccRCC. It was worth noting that the p-value in the external 
validation dataset was more than 0.05 in the multivariate Cox 
regression analysis for the possible reason that its sample sizes 
were not large enough. Thus, it was acknowledged that the 
risk score had superior specificity and sensitivity in predicting 
ccRCC patients’ OS.

In addition, a novel nomogram was constructed that inte-
grated the risk score and several clinical factors (grade, gender, 
age, T, M, and N) to predict the ccRCC patients’ OS. As for 
the calibration plot, very excellent outcomes were found in 
the TCGA cohort between the predicted and actual values. 
Similarly, a satisfactory agreement was also observed in the 
external validation dataset. In all, the novel nomogram might 
better help clinician predict ccRCC patients’ survival status, 
improve risk stratification, and provide the individualized 
treatment than before.

In the study, we comprehensively explored the relation-
ship between six RBPs, risk score, and different clinical factors 
in ccRCC. The results presented that the six RBPs based sig-
nature (risk score) was strongly associated with grade, tumor 
stage, M and T stage, and we also found that risk score would 
rise when clinicopathological factors (grade, tumor stage, M, 
and T stage,) increased. Taken together, RBPs might likely 
have malignant pathological implications in ccRCC, and these 
discoveries could provide novel insights into the underly-
ing mechanism of RBPs in the progression of cancer. What’s 
more, through characterizing RBP expression in ccRCC or 
risk score, novel therapeutic targets could be developed and 
survival could be predicted for ccRCC patients. A  growing 
number of studies indicated that tumor immune infiltration 
played key roles in tumorigenesis and tumor progression, hav-
ing an effect on immunotherapy [43-45]. Hence, in this article, 
we aimed to identify the associations between our established 
signature and tumor immune infiltration. The outcomes of us 
found that 12 out of 21 TIICs (dendritic cells resting, B cells 
naive, macrophages M2, macrophages M0, monocytes, mast 
cells resting, T cells CD4 memory activated, T cells regulatory 

(Tregs), plasma cells, T cells CD8, T cells CD4 memory rest-
ing, and T cells follicular helper) were all significantly linked 
to high-risk and low-risk groups, indicating that immune infil-
tration was significantly related to our established model for 
ccRCC patients.

The strength of the article was that our established RBPs 
related signature was successfully established and evaluated 
in the other three validation sets (ArrayExpress cohort, the 
internal validation dataset 1, and the internal validation data-
set 2). Moreover, six hub RBPs mRNA or protein expression 
were also validated by the ICGC, GEO, CPTAP, HPA data-
sets, and qRT-PCR verification, making our results more 
persuasive. However, several limitations should also be 
mentioned. First, our research was retrospective, thus the 
veracity and availability of six RBPs based signatures should 
be tested in other public databases, even in the prospective 
research. Second, two datasets (TCGA and E-MTAB-1980) 
were screened out of the study with no complete clinical 
parameters, which might decrease the statistical reliability 
of multivariate Cox regression analysis. Third, more clinico-
pathological characteristics were required to be fetched into 
the novel prognostic nomogram, and additional biomarkers 
were needed to explore and identify. Fourth, in regard to the 
expression of IGF2BP2 mRNA, there are many reasons for the 
difference between the public database and our experiment. 
For example, the patient samples in the TCGA database are 
White, Asian, and Black or African-American, and most of 
them are white. However, in our study, all of the patients are 
Asian. In addition, the transcriptome profiling data from the 
TCGA cohort were the RNA-seq data, while the transcrip-
tome profiling data from the GEO cohort were the microar-
ray data which were produced with Illumina HumanHT-12 
V4.0 Array, and in our study, we validated the expression 
level of IGF2BP2 mRNA by qRT-PCR. Besides, the tumor 
samples consisted of many mixed components. Therefore, 
there may be a discrepancy about the expression levels of 
several genes. Moreover, the study revealed that our six RBPs 
prognostic signature was significantly associated with the 
OS in ccRCC. However, it was merely analyzed and evalu-
ated by data mining. Hence, more attention should be paid 
to uncover their roles in ccRCC by functional experiments. 
Despite the deficiencies described above, the predictive value 
of the signature in ccRCC patients could not be ignored. In 
the future, well-designed and multi-institutional studies were 
still required to verify our findings.

CONCLUSION

Taken together, our results successfully singled out six 
critical RBPs (CLK2, IGF2BP2, RNASE2, EZH2, PABPC1L, 
and RPL22L1) as a robust prognostic signature in ccRCC by 
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external and internal verification, helping clinician predict 
patients’ survival status. Moreover, this signature could also 
be an independent prognostic factor for ccRCC. Besides, 
our established model displayed significant associations 
with immune infiltration. Further prospective studies were 
required to verify our established signature and to understand 
the roles of these six RBPs.
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SUPPLEMENTAL DATA

SUPPLEMENT FIGURE S1. The whole workflow chart of this study.
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SUPPLEMENT FIGURE S3. Relationships between clinicopathologic characteristics and our established risk score; distribution of 
risk scores in (A) grade; (B) stage; (C) T stage; (D) M stage.
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SUPPLEMENT FIGURE S2. One-, 3-, and 5-year ROC analyses of nomogram in both TCGA and ArrayExpress databases 
(E-MTAB-1980); (A-C) 1-, 3-, and 5-year in TCGA dataset; (D-F) 1-, 3-, and 5-year in ArrayExpress dataset (E-MTAB-1980).
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SUPPLEMENT TABLE 1. GO results of differently expressed RBPs;

GO results ID Description GeneRatio pvalue p.adjust qvalue Count
BP GO: 

0008380
RNA splicing 31/114 4.69E-24 6.97E-21 6.08E-21 31

BP GO: 
0006397

mRNA processing 32/114 1.93E-23 1.43E-20 1.25E-20 32

BP GO: 
0006401

RNA catabolic process 22/114 4.28E-15 2.12E-12 1.85E-12 22

BP GO: 
1903311

regulation of mRNA metabolic process 19/114 3.24E-14 1.20E-11 1.05E-11 19

BP GO: 
0000377

RNA splicing, via transesterification 
reactions
with bulged adenosine as nucleophile

19/114 2.83E-13 7.01E-11 6.12E-11 19

BP GO: 
0000398

mRNA splicing, via spliceosome 19/114 2.83E-13 7.01E-11 6.12E-11 19

BP GO: 
0000375

RNA splicing, via transesterification 
reactions

19/114 3.33E-13 7.07E-11 6.17E-11 19

BP GO: 
0043484

regulation of RNA splicing 13/114 8.29E-13 1.54E-10 1.35E-10 13

BP GO: 
0051607

defense response to virus 16/114 1.13E-12 1.87E-10 1.64E-10 16

BP GO: 
0009615

response to virus 17/114 1.48E-11 2.21E-09 1.93E-09 17

CC GO: 
0036464

cytoplasmic ribonucleoprotein granule 14/116 1.36E-11 1.87E-09 1.50E-09 14

CC GO: 
0035770

ribonucleoprotein granule 14/116 2.53E-11 1.87E-09 1.50E-09 14

CC GO: 
0043186

P granule 5/116 4.91E-08 1.45E-06 1.17E-06 5

CC GO: 
0045495

pole plasm 5/116 4.91E-08 1.45E-06 1.17E-06 5

CC GO: 
0060293

germ plasm 5/116 4.91E-08 1.45E-06 1.17E-06 5

CC GO: 
0005681

spliceosomal complex 10/116 2.97E-07 7.34E-06 5.90E-06 10

CC GO: 
0033391

chromatoid body 4/116 6.70E-07 1.42E-05 1.14E-05 4

CC GO: 
0000932

P-body 7/116 9.00E-07 1.66E-05 1.34E-05 7

CC GO: 
0036020

endolysosome membrane 3/116 8.06E-05 0.001324915 0.001064832 3

CC GO: 
0005844

polysome 5/116 9.65E-05 0.001428211 0.001147851 5

MF GO: 
0140098

catalytic activity, acting on RNA 29/120 1.19E-22 2.37E-20 1.78E-20 29

MF GO: 
0004540

ribonuclease activity 13/120 4.96E-13 4.93E-11 3.71E-11 13

MF GO: 
0004518

nuclease activity 15/120 1.84E-11 1.22E-09 9.15E-10 15

MF GO: 
0003729

mRNA binding 19/120 3.05E-11 1.52E-09 1.14E-09 19

MF GO: 
0004004

ATP-dependent RNA helicase activity 9/120 7.40E-10 2.41E-08 1.81E-08 9

MF GO: 
0003724

RNA helicase activity 9/120 8.48E-10 2.41E-08 1.81E-08 9

MF GO: 
0008186

RNA-dependent ATPase activity 9/120 8.48E-10 2.41E-08 1.81E-08 9

MF GO: 
0003730

mRNA 3’-UTR binding 8/120 1.56E-08 3.88E-07 2.91E-07 8

MF GO: 
0008026

ATP-dependent helicase activity 9/120 2.28E-08 4.54E-07 3.41E-07 9

MF GO: 
0070035

purine NTP-dependent helicase activity 9/120 2.28E-08 4.54E-07 3.41E-07 9
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SUPPLEMENT TABLE 2. KEGG results of differently expressed RBPs;

ID Description GeneRatio pvalue p.adjust qvalue Count
hsa03015 mRNA surveillance pathway 7/47 8.22E-07 4.28E-05 3.55E-05 7
hsa05164 Influenza A 7/47 5.16E-05 0.001286 0.001068 7
hsa03013 RNA transport 7/47 7.42E-05 0.001286 0.001068 7
hsa03010 Ribosome 6/47 0.000289 0.003763 0.003123 6
hsa05134 Legionellosis 3/47 0.004397 0.045729 0.037953 3


