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INTRODUCTION

Mutations of the dystrophin DMD gene are the cause of two 
devastating and to date incurable diseases, Duchenne (DMD) 
and Becker (BMD) muscular dystrophies [1]. DMD gene is the 
longest human gene with 2.4 Megabases of DNA representing 
∼1% of the chromosome X DNA [2, 3]. It is localized on the locus 
p21 of chromosome X and codes for the protein dystrophin. This 
large gene comprises 79 exons separated by very large introns 
which explain the giant size of the gene; the mRNA of the largest 
isoform of dystrophin is 14 kb which is only 0.6% of the total weight 
of the gene. The intron 44 is 170 kb on its own. Several promoters 
are active in a tissue-specificity manner and lead to the expression 
of full length or shorter dystrophins. The full length dystrophin 
is expressed in all striated skeletal, smooth and cardiac muscles. 
Shorter isoforms are expressed in brain cells and in retina.

MUTATIONS OF THE DMD GENE

A high number of mutations of the DMD gene has been 
reported with ∼65% being deletions of one or several exons, 
∼10% of duplications of exons and ∼15% of single point muta-
tions [4, 5]. Depending on the fact that mutations maintain 
or not of the reading frame, dystrophin will or not be present 
according to the Monaco rule [6]. In case of out-of-frame muta-
tions, dystrophin is mostly deficient and this leads to the severe 
DMD disease. In case of in-frame mutations, dystrophin will 
be expressed as a mutated protein either with missense sub-
stitution or deletions or duplications of an internal part of the 
protein (Figure 1). These in-frame mutations mostly lead to the 
less severe BMD disease in accord with the Monaco rule but 
in certain cases, exceptions to the Monaco rule appear where a 
DMD phenotype with an in-frame mutation is observed. This is 
particularly prominent when mutations involve the N-terminal 
actin-binding-domain or the Cys-rich domain affecting the 
binding of dystrophin to F-actin or β-dystroglycan, respectively.

CLINICS, HISTOPATHOLOGY AND 
DYSTROPHIN IN DMD AND BMD

The first clinical signs of DMD are difficulties for young boys 
to walk and to climb stairs as early as 2-3 years of age. These boys 
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Abstract

Mutations of the dystrophin DMD gene, essentially deletions of one or several exons, are the cause of two devastating and to date incurable dis-
eases, Duchenne (DMD) and Becker (BMD) muscular dystrophies. Depending upon the preservation or not of the reading frame, dystrophin 
is completely absent in DMD, or present in either a mutated or a truncated form in BMD. DMD is a severe disease which leads to a premature 
death of the patients. Therapy approaches are evolving with the aim to transform the severe DMD in the BMD form of the disease by restoring 
the expression of a mutated or truncated dystrophin. These therapies are based on the assumption that BMD is a mild disease. However, this 
is not completely true as BMD patients are more or less severely affected and no molecular basis of this heterogeneity of the BMD form of 
the disease is yet understood. The aim of this review is to report for the correlation between dystrophin structures in BMD deletions in view of 
this heterogeneity and to emphasize that examining BMD patients in details is highly relevant to anticipate for DMD therapy effects.
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never run and become wheelchair confined before their 12 years. 
Respiratory and cardiac impairments appear progressively and 
in most cases, patients do not survive after their 30 years (for a 
review focusing on clinics, see [7]). These clinical signs are due 
to a progressive muscle weakness involving all striated skeletal 
and cardiac muscles and are accompanied by highly elevated cre-
atine kinase blood levels [8-10]. Similar clinical signs are observed 
for BMD patients but with very variable time course and sever-
ity. Some BMD patients are highly asymptomatic while some 
become wheelchair confined around 16 years of age. They could 
survive until very old ages or some of them die from an early heart 
failure [11, 12]. On the histological point of view, the DMD muscles 
show cycles of fiber necrosis and regeneration. However, regener-
ation is overtaken by fiber loss mechanisms and fibrosis and adi-
pose tissue replacement are increased. Nuclei are in the normal 
muscle at the cell periphery and with the ongoing regeneration 
in DMD muscles, nuclei become centrally localized. All these 
features vary depending on the age of the DMD patients with 
fibrosis and fatty infiltration increasing with age and being highly 
variable in BMD. In DMD, electron microscopy reveals lesions of 
the plasma membrane [13] which indicates that the primary role 
of dystrophin is to maintain plasma membrane integrity.

Immunoblotting of dystrophin in DMD muscles reveals the 
total absence of dystrophin except in some revertant fibers. In 

BMD muscles, the expression of mutated dystrophin is observed 
but with highly variable extents from less than 10 % to as high as 
75% of the full length expression of normal muscles [14, 15]. The 
direct correlation between dystrophin amount in BMD and clin-
ical severity is not proven. However, it is recognized that mea-
suring accurately the dystrophin level is highly challenging [16] 
partly explaining the lack of clear correlation between pheno-
type severity and dystrophin level. Other parameters could also 
be involved as there exist certain unexplained results which 
appear in contrast with the accepted rules [17].

DYSTROPHIN

Dystrophin consists of four major structural domains 
(Figure 2) [18, 19]. The N-terminal domain coded by exons 
1 to 8 is mostly an actin-binding domain with two calpo-
nin-homology domains CH1 and CH2 [20-22]. The central 
part of dystrophin coded by exons 8 to 61 is made of 24 spec-
trin-like repeats interspaced by four hinges H1 to H4 and at the 
origin of the rod-shaped filament nature of dystrophin [23]. 
This long domain interacts with a high number of proteins 
among which they are the filamentous actin [24], interme-
diate filaments [25, 26] and microtubules [27, 28] and finally 
the muscular isoform of nitric oxide synthase (nNOS)[29-31] 
and PAR1-b [32]. In addition, this domain interacts with mem-
brane phospholipids[33-35]. The third domain coded by exons 
62 to 69 is the Cys-rich domain composed of a WW domain, 
two EF hands and a ZZ domain[36, 37]. This domain binds to 
the most important partner of dystrophin i.e. the membrane 
protein β-dystroglycan [38, 39] and to several other proteins 
such as plectin[40], ankyrin [41] and the intermediate fila-
ment protein synemin[25]. The C-terminal domain of dystro-
phin coded by exons 69 to 79 binds to the two cytoplasmic 
proteins syntrophin and dystrobrevin[42, 43].

Dystrophin is anchored to plasma membrane by phospho-
lipids and β-dystroglycan which in turn interacts with extracel-
lular matrix proteins (Figure 2). As such, dystrophin constitutes 
a major scaffolding protein of normal muscle which links cyto-
skeletal actin, microtubules and intermediate filaments to the 
extracellular matrix. This dystrophin scaffolding network is pres-
ent at specific structures of the skeletal and heart muscle named 
costameres situated at the periphery of the fibers along with the 
transverse M- and Z-lines [44, 45]. Costameres are specifically 
involved in the lateral transmission of forces from the cytosol 
to the extracellular matrix by which they prevent plasma mem-
brane ruptures during muscle contractions [41, 46-49].

DYSTROPHIN AND DMD AND BMD

The primary defects in both DMD and BMD are disrup-
tions of this dystrophin scaffolding network by the absence of 

FIGURE 1. Examples of mutations of the DMD gene and their 
consequences on the production of dystrophin and the corre-
sponding phenotypes. The boxes represent exons. Right faces of 
boxes indicate that the exon codes for an entire protein sequence 
based on 3-bases codons (examples: exons 47, 48, 49). Curved 
faces indicate that the exon does not code for an entire protein 
sequence but that either the first or the last bases need the pre-
ceding or following exon to code a full 3-bases codon (examples: 
exons 50, 51, 52). BMD for Becker muscular dystrophy; DMD for 
Duchenne muscular dystrophy.
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dystrophin in DMD or due to mutations that ablate part of the 
protein as in BMD. The transmission of forces from the cyto-
sol to the extracellular matrix at the costamere is impaired, 
leading to frequent ruptures of plasma membrane during con-
tractions [13, 50]. This leads to leakage of cellular components 
such as creatine kinase from the interior of the muscle cells 
which explains the high plasma membrane creatine kinase 
levels in blood of children suffering from DMD. In addition, 
these ruptures of plasma membrane increase inside fluxes of 
calcium which subsequently activate calcium-dependent pro-
teases [51].

It is remarkable that a primary defect i.e.  the dystrophin 
deficit or mutation induces a progressive muscle impairment 
demonstrating that muscle is able to function without dys-
trophin but is not able to resist forces in the long time. That 
signifies that the therapy strategies could be very large from 
inducing dystrophin expression to compensatory therapies 
such as increasing blood flow with NO mimetic, increasing 
regeneration potential, surrogate protein expression… As 
well, the observation of the progression of the disease in BMD 
patients indicates that dystrophin could sustain partly its func-
tion even with mutations that ablate part of its central domain. 
In the reverse, missense mutations in the N-terminal ABD or 
in the Cys-rich domain could be accompanied by the DMD 
severe phenotype [4, 5]. Therefore, it is clear that certain parts 
of the molecule are more indispensable than others and this 
led to the idea that a therapy strategy could be to transform 
the severe DMD phenotype into a mild BMD phenotype, 
expressing mutation in the less indispensable part of dystro-
phin (Figure 3).

DYSTROPHIN AND DMD THERAPY

Indeed, the injection of naked whole cDNA has been 
proven to be inefficient to produce significant dystrophin lev-
els in diseased muscles and the cDNA has to be vectorised 
to specifically reach muscles. For this purposes, different 
serotypes of adeno-associated viruses (AAV) have been used. 
However, the whole DMD cDNA is too large to be inserted 
in the AAVs. Therefore, the concept of micro-dystrophin has 

emerged [52]. Truncated gene coding sequences (micro-dys-
trophins) inspired from the truncated dystrophin coding 
sequences observed in mild BMD patients [53](Figure  3) 
were designed [54-57]. One of these has been well used in 
animal models such as the mdx mouse and the grmd dog. 
This highly simplified micro-dystrophin only consists of the 
N-  and Cys-rich domains with two hinges and four repeats 
(Figure  4)[58, 59]. However, this micro-dystrophin does not 
recapitulate all the functions of dystrophin [54] and further 
improvements are needed essentially by addition of other 
binding domains of dystrophin such as for example, the nNOS 
and microtubule binding sites (Figure 2) [56].

The exon skipping therapy aims at recover an in-frame 
mutation equivalent to a BMD mutation. In case of the 
frame-shifting deletion of exon, modifying the splicing of 
mRNA allows the exclusion of one or several additional 
exons and the restoration of a reading frame (Figure  5). To 

FIGURE 2. Dystrophin domains and partners. CH1 and CH2: calponin homology domains 1 and 2; H: unstructured regions called 
hinge; R: spectrin like repeat; WW: Tryptophan-rich domain; Z: ZZ domain; EFH: EF hand domains; PAR-1b: polarity regulating kinase 1b;  
nNOS: n-nitrous oxide synthase; Ifs: intermediate filaments.

FIGURE 3. The Monaco rule and how it is used to generate ther-
apy patterns.
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this end, small antisense oligonucleotides (AONs) sequences 
are designed to bind to exon splice junctions, masking them 
from the spliceosome. This modifies the splicing and skips 
the exon (s) focused on from the mRNA. Two types of AONs 
have been designed, 2’O-methyl phosphorothioate (2’O-Me) 
or phosphorodiamidate morpholino (PMO) oligomers.

The proof of concept has been largely demon-
strated [60-66] [67] and there are now human trials in prog-
ress using oligonucleotides injection using AAV [68-72](see 
the excellent reviews about therapy [56, 73-74]). For example, 
the deletions of exon 46 or 44 both shift the reading frame 
and result in no dystrophin production. The two deletions 
can be enlarged by skipping exon 45 resulting in the two 
in-frame deletions 45-46 and 44-45, respectively (Figure  5). 
Theoretically, the two enlarged deletions should lead to the 
production of a BMD-like truncated and partially functional 
dystrophin.

However, these schemes are more complex than at first 
glance since a lot of BMD patients have a more severe disease 
than others. This high variability of phenotypes has long been 
recognized but rather recently examining BMD patients in 
details has emerged to be relevant to anticipate for DMD ther-
apy effects. In the two examples here in Figure 5, two BMD-like 
deletions may be produced using the same drug in differ-
ent patients. However, the deletion 45-46 has been recently 
reported to be accompanied by a DMD phenotype [75] and to 

produce no dystrophin (personal communication). On con-
trast, there are no patients reported for the deletion of exons 
44-45, signifying that the deletion may be asymptomatic. 
Therefore, the therapy of these two DMD deletions may not 
result in the same cure effect even though we anticipate that 
patients will all be transformed in BMD-like patients.

In that field, we recently studied the clinical status of BMD 
patients with deletions starting by exon 45 deletion e.g. dele-
tions of exons 45-47, 45-48, 45-49 and 45-51 and the in vitro 
biochemical status of the proteins [76]. We showed that the 
structure of the new dystrophins as produced in these BMD 
patients could partly explain the differences in the clinical 
severity of the patients. The patients with deletions 45-47 and 
45-49 were confined to wheelchair or were diagnosed with 
a cardiomyopathy about 10  years earlier than patients with 
deletions 45-48 and 45-51. The new junction at the deletion 
site of these two last deletions reconstitutes a spectrin-like 
structure while it is not the case of the two first deletions. 
Therefore, the choice for skipping one exon or the other for 
restoring the reading frame to a DMD deletion means that the 
genotype - phenotype correlation data in BMD patients is well 
established. In addition, this proves that examining the status 
of large cohorts of BMD patients together with the status of 
dystrophin is of high interest for the therapy design. For the 
clinicians, this also signifies that it is essential to diagnose all 
the BMD patients by genetics and to follow the time course 

FIGURE 4. Two examples of micro-dystrophins.

FIGURE 5. Exon skipping for restoration of the reading frame. Same legend as in Figure 1.
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of the disease by regularly evaluating respiratory and cardiac 
muscle status and walking ability of the BMD patients.

CONCLUSION

Finally, it appears that therapies in progress will not cure 
the DMD disease but slow down its progression. The purpose 
now is to focus therapy on the BMD-like dystrophin sequences 
with the less severe disease either for gene or exon skipping 
therapy. We have now to increase our knowledge about BMD 
disease genetics and time course and dystrophin structure 
consequences after BMD deletions. The effects of genetics 
modifiers have also to be studied in details such as non-synon-
ymous polymorphism (SNPs) [4], noncoding RNAs [77, 78] 
or other genetic modifiers [79-83] as they all may modulate 
the expression of dystrophin or the severity of the disease. 
The diagnosis of BMD is highly relevant to anticipate and to 
understand data resulting from human clinical trials. It is also 
likely that certain severe BMD patients should benefit from 
therapy strategies or from compensatory strategies elaborated 
for DMD patients.
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