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INTRODUCTION

According to the eye-catching reports worldwide, 
dyslipidemia has been demonstrated as one of the most 
essential factors which is strongly associated with the patho-
logical development of several health problems, such as 
hypertension, overweight/obesity, diabetes mellitus, and 
atherosclerotic related cardiovascular diseases, which are 
currently given a conception as cardiometabolic syndrome 
[1]. Actually, due to the results of epidemiological studies, 
dyslipidemia has become one of the most pressing issues 
worldwide during the past several decades, posing serious 
threat to human health and promoting a high mortality [2]. 
In addition, it is also worth noting that dyslipidemia, char-
acterized by elevated serum concentrations of low-density 
lipoprotein cholesterol (LDL-C), very LDL-C (VLDL-C), and 
decreased serum concentrations of high-density lipoprotein 

cholesterol, has also been considered as the most vital mod-
ifiable factor hand in hand with the development and the 
severity of cardiometabolic syndrome [3]. In details, it has 
been demonstrated that the progression of LDL particle 
intruding into sub-endothelium within circulation induced 
by the macrophage is intimately involved in the pathogenesis 
of atherosclerotic related cardiovascular diseases; by contrast, 
the lower serum concentrations of LDL-C induced using lip-
id-lowering agents, such as statins or Ezetimibe, are closely 
associated with the inhibition of atherosclerotic lesions 
which further reduced the risk and suppressed the severity of 
cardiometabolic syndromes [4].

As is known to us, several metabolic related cell types, such 
as the adipocyte, the macrophage, and the hepatocyte, have 
been confirmed as the crucial cells participating in circulating 
lipid metabolism. On the other hand, increasing evidence has 
put forward that several lipid metabolic related genes, such as 
low density lipoprotein receptor (LDLR) gene and proprotein 
convertase subtilisin/kexin type  9 (PCSK9) gene, embrace a 
vital function in regulating circulating and intracellular levels 
of lipid profiles [5-7]. Noteworthy, multiple genetic studies 
revealed that the progression of atherosclerosis was strongly 
heritable, since the variations characterized by significantly 
elevated serum concentrations LDL-C in those genes. Further 
understanding of the correlation between the mutations of 
lipid metabolic related genes with the pathology of athero-
sclerosis could put forward an efficient treatment strategy to 
inhibit the process of cardiometabolic disorders [8]. Although 
the investigations of rare Mendelian disorders with the serum 
concentrations LDL-C provide a novel insight of the modu-
latory genetics on lipid metabolism [9], the disorders could 
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ABSTRACT

Dyslipidemia has recently been identified as an important factor in modulating the progression of several health conditions, grouped as car-
diometabolic syndrome and including obesity, insulin resistance, and atherosclerosis. Among multiple factors which regulate the development 
of cardiometabolic syndrome, sortilin has been found in multiple cell types, such as adipocyte, hepatocyte, and macrophage, suggesting that 
sortilin is correlated to the development and the severity of cardiometabolic syndrome. Consistently, several genome-wide association studies 
and basic experimental research studies are being conducted to find novel gene loci involved in regulating the pathological progression of 
cardiometabolic syndrome. According to these data, both sortilin 1 gene and sortilin protein have an important function in regulating the cir-
culating lipid and glucose metabolism resulting in modulation of disease progression. In this comprehensive review, we summarize the recent 
research results regarding sortilin function in modulating the circulating lipid and glucose metabolism. Moreover, we also discuss and analyze 
the emerging evidence elucidating the potential mechanisms by which sortilin affect synthesis and secretion of lipid and glucose.
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a 95 kDa peptide chain with 874 amino acids, is majorly local-
ized on the TGN. Nevertheless, a minor fraction of mature 
sortilin could be found on the membrane. After combining to 
a ligand, the mature sortilin could form a β-propeller structure 
that contains several binding sites [19].

Sortilin has firstly been found to be abundant within the 
CNS and been described as a neurotransmitter receptor which 
regulates neuronal cells survival and death; however, it has 
recently been found in multiple cell types, such as adipocyte, 
hepatocyte, and macrophage [20]. At cellular level, sortilin acts 
as a linking protein between the TGN, endosome, lysosome, and 
induces multiple lipoprotein including lipoprotein lipase (LPL), 
apolipoprotein E (Apo-E), and Apo-B100 [21]. Otherwise, at 
membrane level, sortilin acts as an uptake receptor which medi-
ates the endocytosis progression of native LDL by the macro-
phage [22]. Furthermore, the trafficking properties of sortilin 
were demonstrated to take part in protein cargo sorting [23]. 
Concerning this notion, several ligands of sortilin, such as Apo-
B100, could be transported from endosome to Golgi apparatus. 
Other ligands, such as Apo-E, are targeted on lysosomal deg-
radation [24]. Conclusively, the findings demonstrated above 
indicate that sortilin is importantly correlated to the pathologi-
cal development and the severity of cardiometabolic syndrome.

ROLE OF SORTILIN IN 
MODULATING LIPID METABOLISM

Since it has been proposed that sortilin is correlated with 
cardio-metabolic disorder diseases, the current focus is trans-
ferring to elucidating the important effect of sortilin as well 
as exploring mechanisms by which SORT1 gene or sortilin 
protein affects the risk of dyslipidemia [25]. Emerging evi-
dence provided by diverse research suggests that sortilin has 
been identified as a new modulator of intracellular or serum 
lipid metabolism. The summary of sortilin in modulating lipid 
metabolism was listed in Table 1.

SORT1 SNPs IN LIPID METABOLISM

At present, extensive sequencing analysis of human SORT1 
gene interval is being conducted to identify SNPs of SORT1 
gene by GWAS. As shown, a close relationship between 
SORT1 gene SNPs with circulating levels of serum lipid pro-
files has been put forward by different research from diverse 
countries. For instance, the first research, which found the 
relationship between SORT1 gene SNPs and the risk of dys-
lipidemia, used data of approximately 9,000 patients and dis-
covered that SNPs of 18 gene loci had relationship with alter-
ations of serum lipid profiles. Among these loci, the 1p13 locus 
was shown to be correlated with the SORT1 gene, and a proxy 
for 1p13 locus SNP was afterward confirmed to influence the 

not explain the various risks of dyslipidemia and its related 
metabolic diseases in general populations, suggesting that 
there might be other undiscovered gene which holds essential 
role in the variability of level of lipid profiles.

During the recent past decades, the genome wide associa-
tion studies (GWAS) have given multiple new gene loci which 
are involved in circulating lipid catabolism. Notably, among 
these gene loci, the chromosome 1p13 has recently been 
demonstrated to embrace an important role in modulating 
the metabolism of lipid and glucose. According to the reports, 
this loci harbored multiple metabolic related genes, including 
cadherin EGF LAG seven-pass G-type receptor 2 gene, pro-
line/serine-rich-coiled protein 1 gene, and sortilin 1 (SORT1) 
gene [10]. Among those three genes, the single gene polymor-
phisms single nucleotide polymorphisms (SNP) of SORT1 
gene in linking dyslipidemia and the pathogenesis of car-
diometabolic syndrome has been published by several large-
scale studies [11,12]. Besides, as a family member of a larger 
vacuolar protein sorting 10 protein (Vps10p) family, sortilin 
embraces the capability in binding to diverse ligands within 
different cells [13]. In the present comprehensive review, the 
understanding of sortilin in regulating circulating or intracel-
lular lipid metabolism has been summarized. In addition, the 
mechanisms whereby sortilin regulates the metabolic progres-
sion of lipid and glucose in adipocyte, hepatocyte, and macro-
phage are also proposed for elucidating the biological function 
of sortilin.

BASIC FEATURES OF SORT1 GENE 
AND SORTILIN PROTEIN

As mentioned above, sortilin belongs to the protein family 
of Vps10p receptors. Emerging evidence provided by com-
putational and functional proteomics research has demon-
strated that there is a 700 amino-acid in the N-terminus of 
domain of Vps10p (Vps10p-D), which could further combine 
to ligands site and mediate the intracellular transportation 
of synthesized protein between trans-Golgi network (TGN) 
and endosomes [14,15] Thereby, Vps10p has been identified as 
a novel type-1 trans-membrane protein that is mainly found 
on the membrane [16]. Aside from sortilin, the Vps10p fam-
ily protein also contains four other members, as sorting pro-
tein-related receptor with A-type repeats and sortilin-related 
receptor central nervous system (CNS) expressed 1-3 [17]. 
Notably, sortilin is considered as the first discovered non-G-
protein-coupled receptor in mammals.

On the other hand, results from the protein crystalliza-
tion research revealed that the precursor of sortilin contained 
a relatively long N-terminal peptide and a relatively short 
C-terminal cytoplasmic tail which could combine with the 
receptor on the surface of Golgi [18]. The mature sortilin, as 
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hold a genetic link between serum lipid hemostasis with the 
pathogenesis of cardiometabolic syndrome, including obesity, 
hypertension, and the atherosclerotic related coronary artery 
disease.

SORTILIN IN LIPID METABOLISM 
IN VITRO

According to the findings from several in vitro researches, 
a direct relationship between sortilin and lipid metabolism is 
well-established using diverse cell types [41-43]. For instance, 
Patel et al. used the macrophages that were derived from the 
bone marrow of SORT1-deficient mice and found that these 
macrophages had significantly reduced uptake rate of LDL-C 
which subsequently led to an inhibition of foam cells forma-
tion. On the contrary, over-expressed SORT1 gene within 
macrophage induced up-regulated LDL uptake, indicating 
that increased SORT1 gene expression within macrophage 
could lead to increased intercellular lipid storage [44].

Besides the important function of sortilin in macrophage, 
other research used HEK293 cells and found that sortilin led 
to increased total cholesterol levels within circulation. Kjolby 
et al. and Gustafsen et al. found that sortilin could co-localize 
with PCSK9 in the TNG, thus enhance the secretion of PCSK9 
from HEK293 cells, inducing a degradation of LDL receptor 
and a reduced clearance rate of LDL-C [45,46]. Further, study 
by Linsel-Nitschke et al. also revealed that over-expression of 
SORT1 gene resulted in increased endocytosis of LDL-C rate 
within HEK293 cells [47].

Eye-catchingly, a recent research demonstrated that the 
primary hepatocyte isolated from SORT1 gene-knockout 
mice exhibited significantly reduced LDL-C contents com-
pared with those within wide-type (WT) mice. With in-depth 
research, the authors found the expression levels of lipogenic 
related genes, including fatty acid binding protein-4 (FABP-4) 
gene and stearoyl-CoA desaturase-1 gene, were down-regu-
lated remarkably within the hepatocytes isolated from SORT1 
gene-knockout mice, proposing a potential pathway by which 
sortilin influences the intracellular lipid concentration within 
the hepatocyte [48].

The important function of sortilin in modulating intra-
cellular lipid metabolism in other cell types has also begun 
to gain appreciation. Noteworthy, Strong et al. provided 
evidence that over-expression of SORT1 gene in diverse cell 
lines could induce an increase in LDL clearance [15,42]. In 
addition, Tveten transfected plasmids, which contained WT 
SORT1 gene or mutant SORT1 gene, in HeLa TREx cells and 
demonstrated a positive relationship between the contents 
of sortilin on the cell surface and the concentrations of LDL 
bound, revealing that sortilin could not elevate the binding of 
LDL through an intracellular potential mechanism whereas 

development of atherosclerotic cardiovascular diseases [11]. 
Likewise, Schadt et al. also identified SORT1 gene SNP had a 
close relationship with the altered serum LDL-C [26]. Results 
from GWAS of the Third United States National Health 
and Nutrition Examination Survey also provided the similar 
relationship, demonstrating that the SORT1 gene SNP play 
embraces a significant function in modulating serum lipid 
profile [27].

Due to the basic experimental advances, multiple 
eye-catching breakthroughs have been made to explain sev-
eral novel SORT1 gene SNPs, such as rs646767 SNP, rs12734074 
SNP, and rs623901 SNP, and serum lipid and glucose lev-
els. Recently, with in-depth investigations, Nakayama et al. 
enrolled more than 21,000 Japanese subjects and demon-
strated that the rs599839 SNP was correlated with signifi-
cantly decreased circulating concentrations of atherogenic 
related lipid profiles, including TG and LDL-C [28]. In addi-
tion, these results have also been replicated in diverse inves-
tigations from several European countries, indicating that the 
G-allele within rs599839 SNP was positively associated with 
the risk and the development of atherosclerotic cardiovascu-
lar diseases [29,30].

On the other hand, a study revealed that rs12740374 SNP 
was strongly correlated with circulating levels of LDL-C [31]. 
Similar with this finding, Musunuru et al. also put forward 
that the rs12740374 SNP promoted the expression levels of 
CCAAT/enhancer binding protein (C/EBP) within hepato-
cyte, inducing to the lower concentrations of LDL-C and tge 
suppressed production of VLDL particles [32]. Besides, this 
result also suggests that SORT1 gene SNP modulates the risk 
of dyslipidemia potentially through, at least partly, regulating 
the gene expression content of C/EBP.

Recently, the rs646776 SNP was also identified to be cor-
related with elevated circulating concentrations of LDL-C 
in children and youth [33]. Aside from the modulatory role 
in serum LDL-C, the rs646776 SNP also presented a geno-
type-specific discordance in serum LDL-C concentrations 
which was greater within younger participants compared to 
those within the older participants [34]. Consistent relation-
ship was further found in numerous research which focuses 
on participants from diverse countries [35-38]. By summariz-
ing the results of these researches, Zeng et al. focused on the 
correlation between rs646776 SNP with circulating lipid levels 
in the Chinese Han population. Interestingly, the authors con-
firmed that the rs646776 SNP could up-regulate the SORT1 
gene expression and as a consequence, increase the circulat-
ing LDL-C levels [39]. More recently, another study enrolled a 
cohort of 2,800 African-Americans and observed that a novel 
SORT1 gene SNP, named rs629301 SNP, was associated with 
the plasma concentrations of LDL-C and VLDL-C [40]. Taken 
together, these results indicate that several SORT1 gene SNPs 
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on the cell surface [49]. In conclusion, these results revealed a 
functional role linking expression of SORT1 gene and sortilin 
protein with intracellular lipid levels.

SORTILIN IN LIPID METABOLISM 
IN VIVO

It is worth noting that several reports cumulatively 
revealed that knockout of SORT1 gene reduced the serum lipid 
levels and the atherosclerotic plaque area significantly. Patel 
et al. observed a significant reduction of atherosclerosis in 
LDLR (-/-) mice with transplanted SORT1(-/-) bone marrow, 
without an effect on the serum concentrations LDL-C  [44]. 
Furthermore, lack of SORT1 expression leads to a robust 
drop of LDL-C and total cholesterol within circulation, how-
ever, the hepatocyte-specific over-expression of SORT1 gene 
induced the significantly increased concentrations of LDL-C 
and TG [44]. Consistent results were presented in several 
basic experimental studies, conducted by Rabinowich et al. 
and Kjolby et  al., which showed decreased circulating levels 
of intermediate density lipoprotein in SORT1-knockout mice 
and in SORT1/LDLR-double knockout (DKO) mice [12,45,48]. 
In addition, the mice with LDLR-deficiency and over-ex-
pressed the SORT1 gene also displayed increased sortilin 
protein expression and accelerated circulating LDL-C clear-
ance. Simultaneously, when SORT1(-/-) mice were treated 
intravenously with tyloxapol, a special inhibitor of LPL, the 
VLDL particles were smaller than that in WT mice [12]. Using 
SORT1(-/-) mice on a chow diet, Strong et al. found that SORT1 
deficiency had a close relationship with reduced VLDL pro-
duction and increased LDL catabolism [15,42]. Consistently, 
Mortensen et al. reported that SORT1/APOE-DKO mice dis-
played slightly lower cholesterol levels than that in APOE(-/-) 
mice with SORT1 over-expression [50]. More Recently, Hagita 
et al. showed that in the LDLR(-/-) mice model, SORT1 defi-
ciency could lead to a reduction in body weight and in plasma 
TG levels, indicating that SORT1 could influence the develop-
ment of obesity [51].

Importantly, several studies concerned the relationship 
between the levels of sortilin and lipid in clinical patients. 
Ogawa et al. reported that in aspirin-treated CAD patients, 
the platelet aggregation could induce solute sortilin release, 
which could be suppressed by aspirin. In addition, plasma 
solute sortilin was higher in patients with hypertension, dys-
lipidemia and diabetes without coronary artery disease than 
in patients with coronary artery disease who underwent the 
aspirin therapy. In these patients, the levels of circulating sol-
ute sortilin hold positive relationship with circulating levels 
of LDL-C and TG [52]. In 2017, Hu et al. demonstrated that 
serum levels of PCSK9 and sortilin were significantly up-reg-
ulated in patients with coronary artery disease. Furthermore, 

the PCSK9 was independent related to the expression levels 
of sortilin, indicating that sortilin could mediate the secretion 
of PCSK9 in plasma [53]. As firmly reported, PCSK9 induces 
reduced LDL-C clearance within circulation through the deg-
radation of LDLR, we could speculate that sortilin may facil-
itate the risk of atherosclerotic related diseases through the 
expression of PCSK9.

MECHANISMS OF SORTILIN 
IN INTRACELLULAR LIPID 
METABOLISM

Hepatocyte

As described previously, hepatocytes produce and release 
multiple proteins which embrace an eye-catching role in reg-
ulating lipid metabolism. Thus, hepatocyte is considered as a 
key factor in the risk of dyslipidemia [54]. Under the condition 
of hepatic related diseases, such as the non-alcoholic fatty liver 
diseases, the metabolic processes of serum lipid profiles are 
impaired owing to the aberrant lipid metabolism by hepato-
cyte [55,56]. In addition, under that pathological condition, 
excessive circulating lipid profiles may enter into hepato-
cytes, which subsequently cause excessive intracellular lipid 
load [57]. However, the accurate mechanisms whereby sorti-
lin influences the intracellular lipid catabolism in hepatocytes 
need to be further elucidated.

Actually, several underlying mechanisms have been 
provided to further explain the association between sorti-
lin with the risk and the development of dyslipidemia. First, 
as described, LDL-C is produced by VLDL through lipoly-
sis. Therefore, the major mechanism is that SORT1 gene in 
hepatocyte may promote VLDL lipolysis by interacting with 
ApoB-100 and as a consequence, increases circulating LDL-C 
level. These findings indicate that sortilin combines Apo-B100 
within Golgi apparatus and resultantly regulates the formation 
of VLDL within hepatocyte and LDL within circulation [43]. 
Second, sortilin has been found to interact with PCSK9; addi-
tionally, sortilin promotes PCSK9 production and secretion 
in hepatocytes. Notably, the up-regulated PCSK9 could bind 
to LDLR and trigger the degradation process of LDLR, which 
could induce a significant reduction of LDL-C clearance 
within circulation [46,58]. Third, it is also worth paid attention 
that the mice with SORT1-deficiency also present a decreased 
released rate of VLDL, accompanied with the reduction of cir-
culating concentrations of LDL-C. Recently, an independent 
research demonstrated that the hepatocyte isolated from the 
mice with SORT1-deficiency presented the decreased risk of 
diet-induced hepatic steatosis. After intervening mice with 
AF38469, as an orally bioactive inhibitor of sortilin, the authors 
demonstrated that these mice displayed reduced circulat-
ing concentrations of LDL-C and relatively lower expression 
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levels of pro-inflammatory cytokines within hepatocytes. 
Synchronously, AF38469 intervention has also been reported 

to be correlated with lower hepatic VLDL released and higher 
expression levels of cholesterol 7α-hydrolase [59].

TABLE 1. Summary of sortilin in modulating lipid metabolism

Model Sample 
Source Manipulation Diet Sortilin 

expression
Plasma 

cholesterol
Intracellular 
cholesterol

ApoB 
secretion 

LDL 
clearance Reference

Genome wide association study)
rs599839 Human N/A N/A ↓ ↓ – – – [28,29,30]
rs646776 Human N/A N/A ↑ ↑ – – – [33-36]
rs12740374 Human N/A N/A ↓ ↓ – – – [31,32]
rs629301 Human N/A N/A ↓ ↓ – – – [40]

In vitro research
CHO Cells Chinese 

hamster ovary
Over-expressed 
SORT1 gene

– ↑ – ↑ – ↑ [42]

HEK293 Cells Human 
embryonic 
kidney

Over-expressed 
SORT1 gene

– ↑ – ↑ – ↑ [43,44]

HuH7 Cells Human 
hepatoma

Over-expressed 
SORT1 gene

– ↑ – ↑ ↓ ↑ [45]

HELA-TREx Cells Human 
cervical 
cancer

Over-expressed 
SORT1 gene

– ↑ – ↑ – ↑ [48]

HepG2 Cells Human 
hepatoma

Over-expressed 
SORT1 gene

– ↑ – ↑ ↓ – [50,51]

ldlD Cells Chinese 
hamster ovary

Over-expressed 
SORT1 gene

– ↑ – ↑ – ↑ [32]

McA Cells Mice Over-expressed 
SORT1 gene

– ↑ – ↑ ↓ ↑ [33]

Primary 
Hepatocytes

Mice liver Over-expressed 
SORT1 gene

– ↑ – ↑ ↓ – [20-22]

In vivo research
APOBEC1-/-; 
LDLR-/-

Mice Over-expressed 
SORT1 gene

Chow ↑ ↑ – – [51]

APOBEC1-/-; 
hAPOBTg

Mice Over-expressed 
SORT1 gene

Chow ↑ ↑ – ↓ – [52-54]

APOBEC1-/-; 
LDLR+/-; hAPOB 
Tg

Mice Over-expressed 
SORT1 gene

Chow ↑ ↑ – ↓ – [55]

APOBEC1-/-; 
LDLR-/-; hAPOB 
Tg

Mice Over-expressed 
SORT1 gene

Chow ↑ ↑ – – – [39,58,59]

WT Mice Over-expressed 
SORT1 gene

HCD ↑ ↑ – – – [29]

SORT1-/-; 
LDLR-/-

Mice Over-expressed 
SORT1 gene

HCD ↑ ↑ – – – [15,43,44,48-51]

APOBEC1-/-; 
LDLR-/-

Mice Knockout of 
SORT1 gene

Chow ↓ ↓ – – – [52]

APOBEC1-/-; 
hAPOBTg

Mice Knockout of 
SORT1 gene

Chow ↓ ↓ – – – [54]

APOBEC1-/-; 
LDLR+/-; hAPOB 
Tg

Mice Knockout of 
SORT1 gene

Chow ↓ ↓ – – – [59]

SORT1-/- Mice Knockout of 
SORT1 gene

HCD ↓ ↓ – ↓ – [61]

SORT1-/- Mice Tyloxapol HCD ↓ ↓ – ↓ – [63]
Patients with 
coronary artery 
disease

Human Aspirin – ↓ ↓ – – – [65]

Patients with 
coronary artery 
disease

Human Non-statin – ↑ ↑ – – – [66]

Patients with 
coronary artery 
disease

Human Statin – ↓ ↓ – – – [67]

ApoB: apolipoprotein B; LDL: low density lipoprotein; SNPs: single nucleotide polymorphisms; HCD: high cholesterol/cholate atherogenic diet; 
AAV: adeno-associated virus; AV: adenovirus; CHO: Chinese hamster ovary; WT: wide type; LDLR: low-density lipoprotein receptor; 
↑: increased; ↓: decreased; –: non‑observed results.
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Nonetheless, increasing results demonstrated that 
over-expression of SORT1 lowered circulating lipid levels. One 
of the most interesting researches conducted by Musunuru 
et al. revealed that the hepatocyte with over-expression of 
SORT1 gene presented lower VLDL secretion rate through 
transporting VLDL to the lysosome, leading to reduced 
serum levels of cholesterol. Consequently, this result indicates 
a negative modulatory effect of sortilin in controlling intracel-
lular lipid metabolism. Moreover, the authors also found that 
over-expression of SORT1 gene in hepatocyte could induce the 
decreased Apo-B100 synthesis, putting forward a now path-
way of sortilin in suppressing VLDL production and release 
through, at least partly, binding to Apo-B100 within Golgi 
apparatus [32].

More recently, an independent study suggested an 
interesting function for sortilin as an alternative LDLR in the 
liver. According to this suggestion, we could speculate that sor-
tilin may increase the LDL endocytosis into hepatocytes and 
enhance the clearance of lipoprotein from circulation [47,60]. 
Conclusively, these potential mechanisms could propose that 
sortilin modulates both serum and intracellular lipid levels 
within hepatocytes. The mechanism is shown in Figure 1.

The discordant results mentioned above provide contra-
dictory functions of sortilin on serum levels of VLDL-C which 
are probably induced by the diverse experimental mouse 
models. Otherwise, it still remains to be further explored 
whether the alteration of SORT1 gene expression results in 
dyslipidemia and its related metabolic diseases.

Adipocyte

Overweight and obesity have been shown to be strongly 
associated with multiple chronic diseases, including dyslip-
idemia, hypertension, and type  2 diabetes mellitus  [61,62]. 

At present, obesity is being identified as one of the most vital 
risk factors of cardio-metabolic syndrome, which resultantly 
induces the most common cause of death [63]. With in-depth 
research, it is being elucidated that one of the hallmarks of 
obesity is excessive storage of TG within the adipocyte that 
is the predominant cell type of adipose tissue. At present, 
the adipocyte is considered to be not only a huge repository 
of fat but also an essential source of adipocytokines  [64,65]. 
Under obese condition, the adipocyte is hypertrophic and 
is involved in regulating serum lipid metabolism. Consistent 
with this notion, increasing results revealed that the adipose 
tissue contained such abundant adipose-derived mesenchy-
mal stem cells (AMSCs) which could differentiate into mature 
adipocytes [66]. As is known to us, the differentiation process 
of AMSCs is separated into about three stage, as the early, the 
intermediate, and the terminal stage, hand in hand with a com-
plex transcription factors, such as C/EBPα/β and proliferator 
activated receptor γ. To be more specific, C/EBPβ embraces 
an essential function during adipocyte differentiation at the 
early stage [67], which subsequently stimulates the expression 
of C/EBPα within the intermediate stage  [68]. Notably, the 
up-regulated C/EBPα could further lead to the transcription 
of numerous adipogenic differentiation related biomarkers, 
such as FABP-4 and fatty acid synthetase, and could maintain 
mature phenotype of adipocyte in the terminal stage [69]. 
Thereby, the aberrant adipogenic differentiation of AMSCs 
induces hyperplasia and hypertrophy of adipocytes, resul-
tantly facilitating the pathological process of cardiometabolic 
disorder diseases.

The important functions of sortilin in modulating lipid 
catabolism within an adipocyte are gaining substantial appre-
ciation since the adipocyte could produce and release mul-
tiple lipid metabolic-related proteins. The first results which 

FIGURE 1. Mechanisms whereby sortilin influences lipid metabolism in hepatocytes. Sortilin could promote VLDL lipolysis by 
interacting with apolipoprotein B-100 and resultantly increasing circulating levels of LDL-C. LDLR: low-density lipoprotein receptor; 
Apo-B100: apolipoprotein B100; LDL: low-density lipoprotein; VLDL: very low-density lipoprotein; PCSK9: proprotein convertase 
subtilisin/kexin type 9.



Su et al.: Role of sortilin in glucose metabolism and lipid profiles

Bosn J Basic Med Sci.  2022;22(3):340-352 346 www.bjbms.org

showed an association between sortilin with the adipogenic 
differentiation of pre-adipocytes was reported by Breitling 
et al., who confirmed that expression content of SORT1 gene 
was increased significantly with the progression of adipogen-
esis. Some SNPs of SORT1 gene has been well-demonstrated 
to elucidate the functions of sortilin in controlling adipocytic 
lipid catabolism. For instance, the SNP of rs599839, which was 
shown previously to affect serum concentrations of LDL-C, 
played an important role in controlling adipogenesis [70]. 
Consistent with these findings, another study used SV129/
BL6 mice and found that sortilin down-regulated the TG con-
centration within 3T3-L1 preadipocytes and suppressed the 
adipogenic differentiation via binding to a vital surface recep-
tor, named the adipogenic limiting receptor δ-like protein 1 
(DLK1) [71]. According to the previous reports, DLK1 has been 
found to be only expressed on the surface of pre-adipocytes 
and is being considered as a pre-adipocyte marker  [72,73]. It 
has been well-established through in vitro and in vivo inves-
tigations that altered contents of DLK1 influence the process 
of adipogenesis [74]. Eye-catchingly, increasing evidence has 
uncovered that DLK1 could be activated as an active soluble 
type via cleavage process induced by tumor necrosis factor 
α-converting enzyme (TACE). The active type of DLK1 was 
further verified to be a biomarker for adipocytic progenitors 
which suppress adipogenic differentiation [75]. Silencing 
DLK1 expression within 3T3-L1 pre-adipocyte mediates 
increased expression of C/EBPβ and C/EBPα, however, the 
combination of sortilin and DLK1 inhibit the degradation of 
DLK1 which consequently suppresses the adipogenic differen-
tiation [76,77]. It is shown that sortilin inhibits the adipogenic 
progression of 3T3-L1 preadipocytes, presenting lower intra-
cellular levels of C/EBPβ, C/EBPα, and TG contents. In con-
clusion, the results indicate that sortilin embraces the property 
of inhibiting adipogenic differentiation of pre-adipocyte [71].

Furthermore, results of another research provide a new 
function of sortilin in lipid homeostasis within adipocytes, 
which may make sortilin a therapeutic target for cardiomet-
abolic disorders. In details, the authors used the LDLR/
SORT1-DKO mice and confirmed that knockout of SORT1 
gene inhibited the mRNA expression of Niemann-Pick 
type C1-Like 1 (NPC1L1) gene and further reduced the mass of 
white adipose tissue; synchronously, knockout of SORT1 gene 
brought improved function of brown adipose tissue through 
down-regulated expression of Kruppel-like factor 4 (KLF4) 
gene and liver X receptor (LXR) gene. In addition, those mice 
that were fed with a high cholesterol diet (HCD) presented 
increasing circulating levels of adiponectin [51]. Given that 
adiponectin is one of the most important adipokine which is 
negatively associated with the process of adipogenic differen-
tiation [78,79], we could make a reasonable speculation that 
sortilin affect adipogenic differentiation via, at least partly, 

influencing adiponectin and subsequently inhibiting the 
development of cardiometabolic diseases through modulat-
ing the expression of NPC1L1 gene, KLF4 gene, and LXR gene.

At present, obesity and diabetes mellitus has been shown 
to be synergistically correlated with impaired glucose metab-
olism within adipocytes, which is induced by the decreased 
intracellular expression levels of glucose transporter 4 
(GLUT4) [80-82]. Indeed, within the 3T3-L1 preadipocyte, 
SORT1 gene is a component of GLUT4 vesicles [83,84]. 
Otherwise, another independent experimental investigation 
demonstrated that administration of phosphatidylinositol 
3-kinase (PI3K) inhibitors could reduce expression levels of 
sortilin protein but not SORT1 gene within adipocytes iso-
lated from the chow-fed mice. The serum-starvation or sup-
pression of the PI3K/AKT signaling pathway also reduced 
sortilin protein without altering SORT1 gene expression level 
within 3T3-L1 preadipocyte, suggesting that the PI3K/AKT 
signaling pathway may induce dynamically reduced levels of 
sortilin and affect the intracellular lipid catabolism through 
DLK1 [85]. Two other independent researches indicated that, 
under obese condition, mice with SORT1 gene deficiency 
present reduced serum TG content and increased uptake of 
glucose. This metabolic phenotype of adipocytes was further 
confirmed to be induced by decreased acid sphingomyelin-
ase activity [86,87]. The comprehensive intracellular function 
of sortilin in lipid metabolism within adipocytes is shown in 
Figure 2.

Macrophage

Macrophages, as one of an important type of white blood 
cells, have been demonstrated to engulf intracellular debris, 
cancer cells, and anything that has not proteins specific to 
healthy cells [88]. Aside from the function in modulating sys-
temic inflammatory response, it is also well-demonstrated 
that macrophage also holds an important function in main-
taining the circulating cholesterol homeostasis [89]. Under 
the condition of dyslipidemia, macrophage could ingest 
LDL-C and subsequently form the foam cells by special sur-
face receptors, such as LDL receptor, cluster of differentiation 
36, and scavenger receptor A. After this vital step, the foam 
cell is intruded into the sub-endothelial zone and facilitates 
the atherosclerotic lesions [90]. Besides, macrophage has also 
been verified to remove excessive intracellular LDL-C through 
a classical pathway named reverse cholesterol transport by the 
ATP-binding cassette transporter A1 (ABCA1), ATP-binding 
cassette transporter G1 (ABCG1), and the scavenger receptor 
B1 (SR-B1) [91].

Recently, SORT1 gene has also been identified to be 
expressed in macrophage. Evidence from previous clini-
cal trials has strongly suggested a vital regulatory effect of 
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sortilin in modulating the process of atherosclerosis through 
inducing foam cells formation, which reveals a relationship 
between sortilin and lipid metabolism within macrophage. 
For instance, an independent study already demonstrated 
the function of sortilin in modulating LDL uptake and foam 
cell formation. Besides, the authors also demonstrated that an 
Apobec1 (-/-); hAPOB transgenic mice with SORT1-deficiency 
present no effect on regulating serum LDL-C levels, whereas 
with dramatically reduced atherosclerotic plaque areas within 
aortic root. Similarly, the SORT1/LDLR-DKO mice displayed 
reduced atherosclerotic plaque areas without any alteration 
in circulating levels of LDL-C, revealing that the recruitment 
of macrophage might not be the only mechanism whereby 
sortilin regulates the process of atherosclerosis [44]. As a 
consequence, the most possible mechanism might be that 
over-expressed SORT1 gene within macrophage could affect 
the LDL-C endocytosis. Notably, the author also observed 
that macrophage with SORT1-deficiency embraced protec-
tive function which inhibited the process of atherosclerosis 
through suppressed LDL-C uptake and foam cells formation 
within macrophage [44], indicating a new mechanism of sor-
tilin in regulating the intercellular lipid metabolism aside from 
the traditional endocytosis of LDL-C in macrophages, such as 
via the LDLR or via the macropinocytosis.

The potential mechanisms whereby sortilin modulates 
the impaired cholesterol efflux from macrophage has been 
given substantial attention during the past several decades. 
According to the published reports, one of the main view-
points is that the process of endocytosis of LDL particle 
induced by sortilin within macrophage might depend on 
serum concentrations of LDL-C. Under the condition of dys-
lipidemia, the exposure of macrophage to circulating LDL-C 

results in increased expression of SORT1 gene and sortilin 
protein within macrophage. Subsequently, this process may 
induce an increased LDL-C endocytosis by sortilin [92]. 
Otherwise, the other viewpoint might be that over-expression 
of SORT1 gene in macrophage up-regulates the content of sor-
tilin protein, which could act as an intracellular sorting recep-
tor and convey the lipid efflux transporters, such as ABCA1, 
ABCG1, and SR-B1, into the lysosome for subsequent degra-
dation. In addition, this step leads to a significant reduction 
of lipid efflux mediated by macrophage [93]. Nonetheless, the 
precise mechanisms whereby sortilin affect intracellular lipid 
metabolism within macrophage need further investigation 
(Figure 3).

Conclusively, the underlying mechanisms whereby sorti-
lin regulates serum or intra-cellular lipid metabolism within 
macrophage have been relatively elucidated. The sortilin level 
in macrophage has a close relationship with intercellular lipid 
metabolism and the inhibition of cholesterol efflux. Thereby, 
with excessive lipid storage within macrophage, sortilin facili-
tates the formation process of macrophage-derived foam cells 
and consequently promotes the pathological progression of 
atherosclerosis and its related coronary artery diseases.

ROLE OF SORTILIN IN 
MODULATING SERUM GLUCOSE 
METABOLISM

In addition to the significant functions in influencing the 
serum or intra-cellular lipid catabolism, various glucose-regu-
latory effects have been also ascribed to sortilin. According to 
the emerging technological breakthroughs, several underlying 
potential mechanisms by which sortilin influence the serum 

FIGURE 2. Mechanisms whereby sortilin influences lipid metabolism in adipocytes. DLK1 could be stimulated through a cleavage 
process induced by TACE. Sortilin inhibits the adipogenic progression of pre-adipocytes via modulating the cleavage process. 
TACE: TNF-α-converting enzyme; DLK1: adipogenesis-limiting receptor δ-like protein 1; C/EBP: CCAAT/enhancer binding protein.
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glucose metabolism is being well-elucidated. As extensively 
shown in the previous studies, sortilin and GLUT4, as the 
most important transporter for glucose metabolism, are co-ex-
pressed within the adipocytes and myotubes, which have been 
demonstrated to be necessary for glucose accumulation [94]. 
Concerning this notion, fine-tuning of the expression con-
tents of sortilin and myotubes are considered to be essential 
to maintain the insulin-induced intracellular transport of glu-
cose. For instance, several research studies have shown that 
the formation of GLUT4-accumulated vesicles within the 
adipocyte and skeletal muscle cells was closely associated 
with the gene expression content of SORT1 [82,95]. Moreover, 
the insulin-mediated translocation of GLUT4 has also been 
shown to be strongly correlated with the gene expression 
contents of SORT1 within the adipocyte [81]. Concerning this 
notion, it has been speculated that the disrupted transport of 
glucose which was promoted by the pathogenic progression 
of insulin resistance under the condition of cardiometabolic 
syndrome, was associated with the alteration of the expression 
contents of sortilin [96].

On the other hand, the gene expression content of SORT1 
has also been shown to be reduced under multiple patho-
logical statuses, such as diabetes mellitus, hypertension, and 
obesity. This significant inhibition has been further con-
firmed to be mediated by several pro-inflammatory cytokines, 
including TNF-α. Intriguingly, Kaddai et al. have postulated 
a potential relationship between the chronic inflammatory 
response, the serum sortilin concentrations, and the risk of 
diabetes mellitus  [96]. Actually, the serum expression levels 
of sortilin are significantly altered in the mouse models with 
insulin resistance promoted by TNF-α or the intervention 

of dexamethasone. Consistent with this result, in presence 
of TNF-α, the expression of SORT1 gene was confirmed to 
be significantly reduced and could be closely correlated with 
insulin resistance. Nonetheless, on the contrary, the dexa-
methasone-mediated insulin resistance is shown to be not 
accompanied by the reduced gene expression contents of 
SORT1 [97,98].

With in-depth investigations, the expression of SORT1 
gene was confirmed to be significantly reduced within adipo-
cytes isolated from the obese mice, especially after the PI3K/
AKT signaling pathway is inhibited, indicating that the insu-
lin-dependent signal pathway could modulate the expres-
sion of sortilin [99]. In addition, it has been shown that both 
TNF-α and dexamethasone could significantly inhibit the bio-
logical activity of insulin receptor tyrosine kinase, which sub-
sequently facilitated the insulin resistance without influencing 
the translocation of GLUT4 [100,101]. Taken together, the 
results mentioned above indicate that the reduced expression 
of SORT1 gene could be identified as one of the most import-
ant biomarkers which results in insulin resistance

CONCLUSION

As described above, there is considerable evidence link-
ing the significant variability at the SORT1 gene locus with the 
increased risk of dyslipidemia and its related cardio-metabolic 
syndrome. Though the potential mechanism is needed to be 
further elucidated, it is reasonable to make a speculation to 
conclude that the relationships between higher serum levels of 
LDL-C is closely correlated with the SORT1 SNPs in patients 
worldwide. On the other hand, almost all the published results 

FIGURE 3. Mechanisms whereby sortilin influences lipid metabolism in macrophage. Sortilin could significantly modulate LDL 
uptake and foam cell formation within macrophage, further affecting the intra-cellular lipid metabolism. SRA: scavenger recep-
tor A; LDLR: low-density lipoprotein receptor; CD36: cluster of differentiation 36; ABCA1: ATP-binding cassette transporter A1; 
ABCG1: ATP-binding cassette transporter G1; SR-B1: scavenger receptor B1; FC: free cholesterol; CE: cholesteryl ester.
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provided an unequivocal function of SORT1 SNPs in regulat-
ing lipid metabolism, shedding light on that the effect of 1p13.3 
gene locus could be identified as a novel biomarker represent-
ing the risk of dyslipidemia and its related cardiometabolic 
syndrome, such as overweight/obesity, atherosclerotic coro-
nary diseases, and diabetes mellitus. Aside from the regulatory 
role of SORT1 gene SNPs, the expression of sortilin in hepato-
cyte, adipocyte, and macrophage indicates that sortilin could 
be considered as an essential factor in controlling intracellular 
lipid catabolism and resultantly influences the pathological 
process of cardiometabolic syndrome.

Although multiple breakthroughs have been provided 
to deeply elucidate the relationship between the alterations 
of circulating sortilin and the risk of dyslipidemia due to the 
technological advances, some reports verified the contradic-
tory effect of over-expressed SORT1 gene on modulating the 
circulating level of LDL-C. To date, the accurate biological 
function of sortilin seem to be clarified, it is still worth noting 
that the effect of sortilin in regulating circulating and inter-
cellular lipid catabolism is controversial. We need large-scale 
and more comprehensive study to further elucidate the mod-
ulatory function of sortilin within hepatocyte, adipocyte, and 
macrophage.
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