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INTRODUCTION

Alzheimer’s disease (AD) is one of the common forms of 
dementia, and its typical pathological features are the presence 
of amyloid (Aβ) deposition, hyperphosphorylated tau pro-
tein aggregation, and neurofibrillary tangles in the brain   [1]. 
Although the pathological relevance is known, the exact 
pathogenesis of AD is still poorly understood. Research in 
recent years has discovered and explained many signal path-
ways related to AD, among which the key role of the autophagy 
pathway in AD is becoming more and more prominent   [2]. 
Autophagy is a crucial regulator of the Aβ and tau proteins 
production. Aβ and tau proteins can induce autophagy as 
well to promote its clearance through the mTOR pathway or 

independently [3,4]. Many studies have shown that normal 
autophagy protects neurons, but dysfunctional autophagy may 
increase the deterioration of neurons in AD  [5,6]. In addition, 
there are interactions between autophagy and other related 
signaling pathways, which provide new possibilities for explor-
ing the pathogenesis and therapeutic targets of  AD.

With the innovation of RNA sequencing technology 
and bioinformatics analysis, the identification of hub genes 
and functional pathways in AD has developed rapidly [7]. 
In addition to mRNA, long non-coding RNA (lncRNA) has 
also been found to be involved in the pathological progress 
of AD, including the induction of autophagy to promote the 
clearance of Aβ or tau protein, the inhibition of neuroinflam-
mation, and other biological processes [8,9]. Studying the 
molecular mechanism of these RNAs and their interaction 
with autophagy will provide promising AD diagnosis and 
treatment methods [10,11].

Although these RNAs play a crucial role in AD, most of 
the current methods for their excavation are based on bioin-
formatics analysis and competition with endogenous RNA 
hypotheses, which may ignore their interconnection with 
autophagy or crosstalk between pathways. In excavating dis-
ease-causing genes, the above methods may fail to identify 
more meaningful molecular targets. Therefore, it is necessary 
to find new effective strategies.

With the accumulation of high-throughput genome-
wide expression data, researchers can systematically study 
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ABSTRACT

Recent studies have shown that different signaling pathways are involved in the pathogenesis of Alzheimer’s disease (AD), with complex molec-
ular connections existing between these pathways. Autophagy is crucial for the degradation and production of pathogenic proteins in AD, and 
it shows link with other AD-related pathways. However, the current methods for identifying potential therapeutic targets for AD are primarily 
based on single-gene analysis or a single signal pathway, both of which are somewhat limited. Finding other methods are necessary for pro-
viding novel underlying AD therapeutic targets. Therefore, given the central role of autophagy in AD and its interplay with its pathways, we 
aimed to identify prognostic genes related to autophagy within and between these pathways based on pathway crosstalk analysis. The method 
of pathway analysis based on global influence was applied to find the feature mRNAs involved in the crosstalk between autophagy and other 
AD-related pathways. Subsequently, the weighted gene coexpression network analysis was used to construct a coexpression module of feature 
mRNAs and differential long non-coding RNAs. Finally, based on two autophagy-related crosstalk genes (CD40 and SMAD7), we constructed 
a prognosis model by multivariate Cox regression, which could predict the overall survival of AD patients with medium-to-high accuracy. In 
conclusion, we provided an effective method for extracting autophagy-related significant genes based on pathway crosstalk in AD. We found 
the biomarkers valuable to the AD prognosis, which may also play an essential role in the development and treatment of AD.

KEYWORDS: Alzheimer’s disease; autophagy; prognostic signature; pathway crosstalk; weighted gene coexpression network analysis; pathway 
analysis method based on global influence

RESEARCH ARTICLE

©The Author(s) (2021). This work is licensed under a Creative 
Commons Attribution 4.0 International License



Fang Qian, et al.: Autophagy genes in Alzheimer’s disease

Bosn J Basic Med Sci.  2022;22(5):751-771 752 www.bjbms.org

analysis and differential expression analysis on the other AD 
data to verify the prognostic genes. The experimental results 
confirmed our conclusions.

MATERIALS AND METHODS

Data source

The data used in this study was obtained from subjects 
of the Religious Order Study (ROS) or the Rush Memory 
and Aging Project (MAP), which are two prospective clini-
cal-pathological cohort studies of aging and dementia. The 
two studies (collectively referred to as ROSMAP) share clin-
ical and neuropathological standards, allowing joint data anal-
ysis [20,21]. Moreover, the ROSMAP study is stored in the AD 
Knowledge Portal (https://adknowledgeportal.synapse.org/).

The gene expression profile (syn8691134) and clinical 
information needed for this research were obtained from 
the AD Knowledge Portal database (the raw count data 
can be obtained online at https://www.synapse.org/#!Syn-
apse: syn8691134, the filtered raw count data can be obtained 
online at https://www.synapse.org/#!Synapse:  syn8456637, 
and the clinical data were downloaded online at https://
www.synapse.org/#!Synapse:  syn3191087). According to clin-
ical information, we screened 155 AD samples and 86 nor-
mal samples as the data for this study. The validation dataset 
(syn4009614) was obtained from the AMP-AD Knowledge 
Portal database (the normalized data can be obtained online 
at https://www.synapse.org/#!Synapse: syn4009614).

We downloaded the autophagy gene file from the Human 
Autophagy Database (http://www.autophagy.lu/) and 
HAMdb (http://hamdb.scbdd.com/) for the annotation of 
autophagy genes on the pathway. The experimental flowchart 
of this paper is shown in the Figure 1, and we will discuss each 
part in detail later.

Data preprocessing

According to the human genome assembly GRCh38, the 
ensemble ID of the raw count data was switched to the gene 
symbol. According to the gene type annotation, the genes 
in the raw data were divided into 19,677 mRNAs and 14,259 
lncRNAs. We only kept the highly expressed mRNA (obtained 
from filtered count data syn8456637, deleted genes whose 
count is <1 CPM in at least 50% of the samples, and deleted 
genes whose length and GC content are missing). Then, we 
performed TPM standardization and normalization on the 
filtered mRNA expression profile and used the SVA package 
to eliminate batch effects (sequencing batch of samples, nine 
batches in total) in the standardized data.

The R package “DESeq2” was used to identify differen-
tially expressed lncRNAs (DElncRNAs) [22]. First, we used 

the functional relationship of single or several genes in dis-
eases  [12]. It is well known that genes do not function in iso-
lation but work together within various metabolic, regulatory 
and signaling pathways. Furthermore, increasing evidence 
shows that pathway-based methods are generally superior to 
gene-based counterparts [13].

Methods based on pathway analysis can explain complex 
biological processes and biological significance. AD is a mul-
tifactorial disease involving multiple cell signaling pathways, 
so crosstalk within and between pathways exists. Because the 
number and combinations of signals are limited, crosstalk 
between pathways can create novel input/output combina-
tions. Having more input/output combinations increases the 
possible ways of the signaling information flow within the cell, 
allowing more diverse phenotypes. Thus, genes generated by 
crosstalk play an essential role in the generation and develop-
ment of disease [2,14,15].

Several recent techniques have used path topology infor-
mation to identify dysfunctional paths. The pathway analysis 
based on the global influence (PAGI) algorithm utilizes gene 
networks [16], looking for dysregulated pathways in diseases 
by considering the internal effects of pathways and crosstalk 
between pathways, which provides the possibility for the AD 
exploration.

Studies have shown that lncRNA can directly mediate 
crosstalk in pathways by cooperating with coding genes that 
play an important role in diseases [17]. In addition, lncRNAs 
and mRNAs can compete with each other through miRNAs 
response elements to regulate AD progress [18]. Based on the 
interaction of autophagy with the RNA mentioned above and 
other signal pathways in AD, it is believed to be a novel idea 
to investigate the role of autophagy-related genes in AD and 
their pathogenic mechanisms in diseases from the perspective 
of pathway crosstalk.

Our research introduced a novel method to identify prog-
nostic genes related to autophagy in AD. First, the PAGI path-
way analysis algorithm was applied to gene expression data in 
order to obtain pathways and crosstalk genes associated with 
AD. Second, the WGCNA algorithm was used to select sig-
nificant genes with coexpression relationships, and genes in 
the same expression module may have similar biological func-
tions [19].

Finally, the survival analysis was applied to significant 
genes, and the prognostic genes of AD were extracted. Results 
showed that based on PAGI, more than 36 autophagy-related 
pathways dysregulated and crosstalk with each other in AD. 
Furthermore, 103 lncRNAs and 650 mRNAs related to auto-
phagy with coexpression relationships were identified using 
WGCNA analysis. Next, CD40 and SMAD7 were identi-
fied as prognostic genes of AD, which was also verified in the 
external AD dataset. Finally, we performed prognostic survival 
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Second, calculating the global dysregulated score (GDS). 
GDS was used to assess the degree to which genes are affected 
by the internal effects of pathways and crosstalk between 
pathways. The Random Walk with Restart (RWR) algorithm 
captures global relationships within a network and can cal-
culate the node’s proximity to a set of source nodes [25]. In 
the application process, the two-sample (diseased and nor-
mal samples) t-test was performed to evaluate the extent of 
differential expression (t-score). All genes represented in the 
gene expression profile were mapped to the global network as 
source nodes. The RWR algorithm was modified by combin-
ing the t-score and the global network topology to calculate 
GDS and reflect the global influence of the gene on the source 
nodes. The revised algorithm formula is as follows:

  pt+1=(1–r)Mpt+rp0 (1)

Where, M is the column-normalized adjacency matrix of 
the global network graph G, p p p pt t t

n
t ’

= ( )1 2, ,  is the node 

vector at time t, and its ith element pi
t  represents the proba-

bility of being at node i at time t, and n represents the number 
of all nodes (genes) in G. r is the restart probability, which con-
trols the degree to which the random traverser returns to the 
source node in each iteration.

The initial probability p p p pn

’0
1
0

2
0 0= ( ), ,  is normal-

ized to the unit vector p t score t scorei i i
0 = − −∑/  

. The higher the pi
0  of gene i, the greater the degree of dis-

turbance to other genes. pt can reach a stable state p∞ after 

the DESeqDataSetFromMatrix function to convert the count 
matrix into a DESeqDataSet (DDS) object. The formula of the 
design parameter of DESeqDataSetFromMatrix function is 
as follows: design=~batch+group, where batch represents the 
sequencing batch information of the sample (batch value is from 
0 to 8), group is the grouping information of the sample (the 
samples were divided into diseased group and normal group). 
Then, we used the DESeq function to normalize (by calculating 
the size factor of each column of samples in the count matrix) 
DDS and analyze the differential expression of lncRNAs in nor-
mal and diseased samples. The selected criteria for screening 
differentially expressed lncRNAs was taking p < 0.05 into con-
sideration, and a log2FC range of –0.5-0.5 was rejected.

PAGI

The PAGI algorithm is a pathway analysis method based 
on global influence, which identifies dysregulated pathways 
by considering both within-pathway effects and crosstalk 
between pathways. We used the PAGI algorithm to identify 
dysregulated pathways in AD. Principle of the PAGI algorithm 
is as follows:

First, constructing the global gene-gene network. Based 
on the structural information and genetic relationship of each 
pathway in KEGG, the “iSubpathwayMiner” system was used 
to construct a global gene network that reflected the relation-
ship between and within a pathway [23,24].

FIGURE 1. Framework of the experiment.
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multiple iterations, it was used to measure the GDS of genes. 
The GDS of gene i was assigned by the normalized ip∞  as: 

GDS p min p max p min pi i= − −( ( ))/( ( ) ( ))∞ ∞ ∞ ∞ . Through this 

method, the GDS of each gene in the global network can be 
obtained.

Third, identification of dysregulated pathways. The gene 
list L={g1,g2,g3,...,gn} consists of all genes in the expression pro-

file sorted according to t j
GDSj1+  , tj represents |t-score| of gene 

j, and GDSj represents GDS of gene j. The dysfunction score 
of p path is calculated based on the information of its gene 
mapping in the L path and is calculated by cumulative distri-
bution functions (CDFs). The CDFs of Inp (genes in P) and 
Notp (genes in L, not in P) are used to evaluate the fraction 

of genes in p weighted by their correlation ( t j
GDSj1+

), and the 
fraction of genes not in P presents up to a given position i in L. 
The formula is as follows:

  CDF i
t

NInp
g

j
GDS

Ri

j
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∈
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and
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Where, N tR
g p

j
GDS

i

j=
∈

+∑ 1 ; NNotP represents the number of 

genes in L not in P. With the position I walking down the list 
L, the formula for calculating the dysfunction score of path P 
is as follows:

  Sp=maxi∈L{CDFInp (i)–CDFNotp (i)} (4)

Finally, the significantly dysregulated pathways in AD 
obtained according to the false discovery rate (FDR<0.01) 
were used as candidate pathways. According to the autophagy 
gene annotation results of each candidate pathway and the 
literature review, the pathways that interact with autophagy 
were selected as the feature pathways, and the mRNAs in the 
feature pathway were used as the feature mRNAs.

Construction of coexpression gene modules based 
on WGCNA analysis

The R package “WGCNA” was used to identify DElncRNAs 
and feature mRNAs with coexpression relationship. Therefore, 
the feature mRNAs and DElncRNAs served as the input of 
WGCNA. First, the absolute value of the Pearson correlation 
coefficient between genes was used to construct the correla-
tion matrix (Si,j, i and j indicate the ith and jth gene). The thresh-
old of the fitting index was set to 0.85 (R2>0.85) to fit with the 
scale-free network. When the fitting index reached 0.85, the β 
value (soft threshold) that maximized the average connectivity 
was selected to perform a power-law operation to convert the 
correlation matrix into an adjacency matrix (ai,j, ai,j=|Si,j|

β) [26].

Then, the pickSoftThreshold function was used to calcu-
late the corresponding and average connectivity for different 
β values (the β values were set between 1 and 20). Next, we 
transformed the adjacency matrix into a topological overlap 
matrix. We used the DynamicTreeCut algorithm to construct 
the average linkage hierarchical clustering dendrogram [27]. 
Finally, we calculated the module Eigengenes, hierarchically 
clustered the modules, and merged similar modules [28].

Functional enrichment analysis

KEGG analysis was used to explore the biological func-
tions of genes on coexpressed modules [29]. The filter con-
dition of the enrichment pathway was that p-value and the 
adjusted p-value (q-value) were both less than 0.05. Finally, 
according to the results of KEGG enrichment, the gene mod-
ules needed in this study were obtained, and the genes in the 
modules were used as AD significant genes.

Cox proportional hazards regression analysis

To obtain significant genes related to the prognosis of AD, 
we used the R package “survival” to perform univariate and 
multivariate Cox regression analysis on the AD candidate bio-
markers (genes in the turquoise module). To verify the validity 
of the prediction model, we used syn8691134 as the training 
dataset, and syn8691134 and syn4009614 datasets were com-
bined as the testing dataset. First, we extracted the expression 
data of genes belonging to the turquoise module in the train-
ing dataset and the testing dataset, and the expression data of 
their overlapping genes were used as the input of univariate 
Cox regression analysis.

Then, univariate Cox regression analysis was used to iden-
tify genes significantly related to the overall survival (OS) of 
patients with AD. The criterion for screening genes related to 
the OS of patients with AD is that p < 0.01 was considered. 
Next, we performed multivariate Cox regression analysis 
on the genes screened by univariate Cox regression analy-
sis and constructed a prognostic-related model of AD. We 
used the stepwise selection of variables based on the lowest 
Akaike information criterion (AIC) to optimize the prognos-
tic-related model of AD. We calculated the risk score of each 
patient, which can be used to divide AD patients into a high-
risk group and a low-risk group. The formula is as follows:

  Risk Score coef k *x k
k

n

= ( )
=
∑

1

( )  (5)

Where, coef(k) represents the Cox regression coefficient, 
x(k) represents the expressive value of each genes, and n rep-
resents the number of genes.

Finally, the Kaplan–Meier (KM) curve and forest plot 
of multivariate Cox regression analysis were generated by R 
package “survival.” The KM curve was used to judge whether 
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it exists a difference in survival between the high-risk and the 
low-risk groups. The forest plot was used to judge whether 
the risk score is an independent prognostic factor affecting 
OS. Then time-dependent receiver operating characteristic 
(ROC) curve and the multi-index ROC curve were used to 
evaluate the accuracy of the prognostic-related model by R 
package “timeROC.”

Statistical analysis

According to the test condition, Wilcoxon test was used to 
perform statistical comparisons between two groups of data, 
and p< 0.05 was used to indicate statistical significance. The 
GSE118553 and GSE5281 AD dataset were obtained from the 
GEO platform (https://www.ncbi.nlm.nih.gov/geo/).

RESULTS

Data preprocessing results and DElncRNAs

After quality control and TPM standardization of mRNAs 
data, 13,556 mRNAs were obtained. Then, the standardized 
data were adjusted in batches (nine batches in total) through 
the combat function of the SVA package, and the adjusted 
data were reserved as the input of the PAGI algorithm.

To identify differentially expressed lncRNAs, we used the 
DESeq2 package to standardize the gene expression profile of 
lncRNAs and analyze differential expression. The lncRNAs 
with p < 0.05 and |log2FC|>0.5 were extracted as statisti-
cally significant differential genes. Finally, 180 differentially 
expressed lncRNAs were obtained, of which 75 were upreg-
ulated and 105 were downregulated. The top 30 differential 
genes (15 down and 15 up) are shown in the Supplemental 
Table 1.

Exploring autophagy-related pathways based on 
PAGI

To explore autophagy-related biomarkers in AD from 
the perspective of pathway crosstalk, we applied the mRNA 
expression profile of AD to the PAGI algorithm. According to 
the FDR value <0.01, 94 pathways related to AD were screened 

out. Then, by consulting the literature and annotating the 
autophagy genes on each pathway, 36 autophagy-related path-
ways and crosstalk genes required for this study were screened 
out. A  total of 1436 crosstalk genes (feature mRNAs) were 
included in the 36 pathways, which were one of the input data 
of the WGCNA algorithm.

Ten out of the 36 pathways were confirmed to be related 
to autophagy in AD and are shown in Table 1, and informa-
tion about the remaining pathways is shown in Supplemental 
Tables 2 and 3. The 10 pathways and their crosstalk genes (GDS 
score ranks top 20 in the pathway) were displayed in a path-
ways-gene network in Figure 2. From Figure 2, it can be seen 
that genes in hsa047229 (Neurotrophin signaling pathway) 
and hsa04310 (Wnt signaling pathway) pathways had higher 
GDS scores, while genes on hsa04141 (Protein processing in 
endoplasmic reticulum) pathways had lower GDS scores.

In addition, based on the KEGG database (https://
www.kegg.jp/), we explored other diseases associated with 
autophagy-related crosstalk genes in AD (Supplemental 
Table  4) and mapped related genes in AD pathways 
(Supplemental   Figure  1). These genes, which are related to 
other diseases, may affect the progression of AD by participat-
ing in signaling pathways such as the calcium signaling path-
way, insulin signaling pathway and calcium signaling pathway 
in AD.

In Table 1, the first column is the pathway name based on 
PAGI algorithm screening, the second column is the pathway 
ID, and the third column “Size” indicates the number of genes 
contained in the pathway, the fourth column “Pathway Score” 
is the score after the pathway passes the PAGI algorithm, the 
fifth column “Gene\%” is the percentage in the gene list before 
running enrichment peak, and the sixth column “Signal” indi-
cates the intensity of the enrichment signal, and the seventh 
column is the number of autophagy genes included in the 
pathway.

It can be seen from Table  1 that the scores of these 10 
pathways were all higher than 0.4, and the pathway score of 
AD (hsa05010) pathway was 0.42487, which directly proved 
the effectiveness of the pathway selection through PAGI. 
Furthermore, the pathway score of the mTOR signaling 

TABLE 1. Ten pathways related to autophagy identified by the PAGI

Pathway name Pathway ID Size Pathway score Gene/% Signal Autophagy
Protein processing in endoplasmic reticulum hsa04141 152 0.44823 0.308 0.359 33
Apoptosis hsa04210 70 0.44783 0.152 0.231 28
Alzheimer’s disease hsa05010 132 0.42487 0.37 0.357 21
mTOR signaling pathway hsa04150 46 0.48142 0.15 0.297 23
Insulin signaling pathway hsa04910 119 0.51274 0.0637 0.262 30
Neurotrophin signaling pathway hsa04722 114 0.54769 0.144 0.326 32
Endocytosis hsa04144 174 0.42422 0.192 0.268 35
Type II diabetes mellitus hsa04930 32 0.5506 0.0875 0.314 8
Wnt signaling pathway hsa04310 123 0.4932 0.0972 0.252 12
Calcium signaling hsa04020 133 0.57959 0.167 0.367 8
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FIGURE 2. Network connection diagram of 10 pathways and their crosstalk genes. The blue diamond nodes represent different 
pathways, and the size of the nodes represents the score of the pathway in PAGI. The circular node connected to the blue dia-
mond node represents the genes included in the pathways. The shade of the color represents the level of the gene’s GDS score. 
The darker the node’s color, the higher the GDS score represents the gene. hsa04141: Protein processing in endoplasmic retic-
ulum. hsa04210: Apoptosis. hsa05010: Alzheimer’s disease. hsa04150: mTOR signaling pathway. hsa04910: Insulin signaling 
pathway. hsa04722: Neurotrophin signaling pathway. hsa04144: Endocytosis. hsa04930: Type II diabetes mellitus. hsa04020: 
Calcium signaling.

pathway (hsa04150) was 0.48142, which is currently one of the 
most promising targets for autophagy-related AD therapy [3]. 
Moreover, autophagy genes (489 in total) in the selected path-
ways all account for a high proportion, which provided a basis 
for extracting autophagy-related crosstalk genes.

Analysis of autophagy-related coexpression 
module

To obtain feature mRNAs (autophagy-related crosstalk 
genes) and lncRNAs with a coexpression relationship, we used 
the WGCNA algorithm to construct a coexpression module 
for it. First, we obtained the count matrix composed of differ-
entially expressed lncRNAs and autophagy-related crosstalk 
genes. β=6 (R2=0.89) was set as the soft-thresholding parameter 
to construct the scale-free network (Figure 3A). The number 
of genes in each module was defined as at least 50. Next, seven 
modules were identified based on DynamicTreeCut algo-
rithm. Finally, based on the module Eigengenes, the height of 
cut was 0.25 to merge similar modules (Figure 3B). Moreover, 
six coexpression modules were identified (Figure 3C). The six 
modules are shown in Table 2. From Table 2, we can see that 
the number of autophagy genes in the turquoise module is the 
largest among the six modules.

KEGG pathway enrichment analysis was performed on 
the genes of each module, and the turquoise module was 
finally determined as the research object according to the 

analysis results. The turquoise module includes 103 lncRNAs 
and 650 mRNAs. One hundred and one of the 650 mRNAs 
are located in the AD pathway (369 genes), and 45 are auto-
phagy genes (489 genes), as shown in Figure 4. From Figure 4, 
the crosstalk genes in the turquoise module overlap more with 
the genes in autophagy and AD pathway (hsa05010), indicat-
ing that the coexpression module we selected has a correlation 
with AD and autophagy. Pathway enrichment analysis of gene 
modules was implemented by David (https://david.ncifcrf.
gov/) [30].

The pathway enrichment results of the turquoise module 
are shown in Figure 5. David obtained the first 20 pathways 
with p < 0.05, including AD pathway, pathways of neuro-
degeneration-multiple diseases, and PI3K-Akt signaling 
pathway  [31]. The discovery of the above pathways directly 
proved the significance of the turquoise module as a research 
object. Moreover, the genes on the turquoise module are also 
involved in MAPK signaling pathway [32], protein process-
ing in endoplasmic reticulum [33], calcium signaling path-
way [34], focal adhesion [35], insulin signaling pathway [36], 
neurotrophin signaling pathway [37], regulation of actin 
cytoskeleton [38], endocytosis [39], and Ras signaling path-
way [40].

In Table 2, the first row is the name of the six coexpression 
modules, and each column represents the number of lncRNA, 
mRNA, and autophagy genes contained in the module.
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Construction of an autophagy-related prognostic 
gene model

The clinical data downloaded from the AMP-AD database 
were sorted and screened. Then, the survival time and clinical 

characteristics (braaksc: Braak stage, ceradsc: Assessment of 
neuritic plaques, and dcfdx_lv: Clinical cognitive diagnosis 
summary at last visit) of 82 AD patients in the training data-
set and 137 AD patients in the testing dataset were obtained 
(Supplemental Table  5). Based on the results of WGCNA 
and KEGG, we selected the genes in the turquoise module 
(754 genes) for the following analysis. Among the overlapping 
genes of training dataset and testing dataset, 631 genes belong 
to the turquoise module. Then, we used the expression data 
of these 631 genes in training dataset as the input of univari-
ate Cox regression analysis. According to p-value (p < 0.01), we 
screened 12 genes that were significantly related to the prog-
nosis of AD (Table 3). Subsequently, we performed multivari-
ate Cox analysis on 12 prognostic-related genes obtained from 
univariate Cox regression analysis. Afterward, according to 
the lowest AIC value, the prognostic risk model of two genes 
(CD40 and SMAD7) of the training dataset was constructed. 
The risk score is expressed as: riskScore = (CD40 exp.* –1.13) 
+ (SMAD7 exp.* –1.41) (Table 4). Patients with AD in training 

TABLE 2. Six coexpressed gene modules obtained by WGCNA

Module Blue Green Gray Red Turquoise Yellow
Number of lncRNAs 16 3 53 4 104 3
Number of mRNAs 470 102 27 82 650 102
Number of 
autophagy genes

64 19 3 4 84 18

FIGURE 3. Network construction of coexpressed genes. (A) Analysis of the scale independence and mean connectivity for vari-
ous soft-threshold powers; (B) the cluster dendrogram of module Eigengenes; (C) dendrogram clustered based on a dissimilarity 
measure (1-TOM).

FIGURE 4. Venn diagram showing the overlap of crosstalk 
genes, autophagy-related genes (autophagy), and Alzheimer’s 
disease pathway genes (AD pathway, hsa05010).

C

BA
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FIGURE 5. The results of pathway enrichment. The horizontal axis is the number of genes in the pathway, and the vertical axis is 
the pathway list. Red to blue indicates the q-value (adjusted p-value).

TABLE 3. Twelve autophagy-related crosstalk genes associated 
with AD overall survival time were obtained from univariate 
Cox regression analysis

id HR HR.95L HR.95H p-value
LRP5 0.233636 0.077723 0.702308 0.009618
TLN1 0.259479 0.096078 0.700778 0.007782
CD40 0.172931 0.04894 0.611054 0.006434
PLCG1 0.232832 0.085531 0.633813 0.004339
SMAD7 0.181477 0.066411 0.495911 0.000877
DNM2 0.219818 0.071389 0.676855 0.008287
ARRB1 0.276896 0.111948 0.684888 0.00545
PIK3CD 0.20401 0.062679 0.664023 0.008292
MAP3K3 0.097144 0.020732 0.455191 0.003089
SSH1 0.21241 0.065672 0.687017 0.009688
RAF1 0.174725 0.048116 0.634484 0.008016
RPS6KB1 0.210312 0.067371 0.656535 0.007265

TABLE 4. Two autophagy-related prognostic genes were 
obtained from multivariate Cox regression analysis

id Coef HR HR.95L HR.95H p-value
CD40 –1.13112 0.322671 0.086041 1.210083 0.093501
SMAD7 –1.40787 0.244663 0.07868 0.760809 0.015006

dataset and testing dataset were divided into low- and high-risk 
groups based on the median risk score in the training dataset.

According to the median risk score, 82 AD patients in the 
training dataset were divided into high-risk (n = 41) and low-risk 
(n = 41) groups. It can be seen from the KM curve that the OS 
rate of high-risk patients was significantly lower compared with 
low-risk patients within 5 years (Figure 6A). Multivariate Cox 
regression analysis revealed that the risk score of prognostic risk 

model (p = 0.002) was an independent prognostic factor affect-
ing the OS of patients with AD in training dataset (Figure 6B). 
The area under the ROC curve (AUC) was calculated to assess 
the predictive ability of the model. The 3-  and 5-year AUCs 
were 0.643 and 0.758 (Figure 6C). The multi-index ROC curve 
showed that the AUC value of the risk score based on the prog-
nostic risk model was greater than 0.7 (AUC = 0.758), which 
was more significant than other clinical prognostic indicators, 
such as braaksc, ceradsc, and dcfdx_lv (Figure 6D).

The results of the Kaplan–Meier analysis showed that 
patients with high-risk scores had less survival time in the 
testing datasets (p < 0.001) (Figure 7A). The forest plots of the 
multivariate independent prognostic analysis indicated that 
the risk score of prognostic risk model (p < 0.001) was an inde-
pendent prognostic factor affecting the OS of AD patients in 
testing dataset (Figure 7A and B). From time-dependent ROC 
curve of testing dataset, the 3- and 5-year AUCs were 0.672 
and 0.746 (Figure  7C). The multi-index ROC curve showed 
that the AUC value of the risk score based on the prognostic 
risk model was >0.7 (AUC = 0.737), which was more signifi-
cant than other clinical prognostic indicators, such as braaksc, 
ceradsc, and dcfdx_lv (Figure 7D). The above results proved 
the accuracy of the prognostic risk model.

The expression of CD40 and SMAD7

Finally, we explored the expression of CD40 and SMAD7 
in AD and normal brain tissues using GSE5281, GSE118553, 
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FIGURE 6. Prognostic significance analysis of the Alzheimer’s disease training dataset. (A) Kaplan–Meier curve to compare OS 
of high risk with low-risk samples (p = 0.002); (B) forest plot of multivariate independent prognostic analysis. The square on the 
horizontal line shows the hazard ratio (HR), and the horizontal line represents the 95% confidence interval; (C) time-dependent 
receiver operating characteristic (ROC) curve analysis of the risk score model for predicting 3- and 5-year OS; and (D) multi-index 
ROC curve. The curve area is used to assess the accuracy of the risk model (model AUC = 0.758).

DC

BA

FIGURE 7. Prognostic significance analysis of the Alzheimer’s disease testing dataset. (A) Kaplan–Meier curve to compare OS 
of high risk with low-risk samples (p < 0.001); (B) forest plot of multivariate independent prognostic analysis. The square on the 
horizontal line shows the hazard ratio (HR), and the horizontal line represents the 95% confidence interval; (C) time-dependent 
receiver operating characteristic (ROC) curve analysis of the risk score model for predicting 3- and 5-year OS; and (D) multi-index 
ROC curve. The curve area is used to assess the accuracy of the risk model (model AUC = 0.737).
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and syn4009614. As shown in the following figures below, we 
observed that CD40 (Figure 8A-C) and SMAD7 (Figure 9A-C) 
were significantly upregulated in AD.

DISCUSSION

Extract autophagy-related pathways based on 
pathway crosstalk

A variety of signal pathways in AD are involved in the gen-
eration and development of disease, and crosstalk is inevitable 
between these signal pathways. Crosstalk between pathways 
provides a novel combination of non-linear response dysfunc-
tion. Furthermore, genes generated by crosstalk play an essen-
tial role in the generation and development of the disease. As 
the primary regulator of the production and clearance of Aβ 
and tau protein in AD, it has recently been discovered that the 
effect of autophagy on AD is related to its interaction with 
various signaling pathways and known AD biomarkers [2,8]. 
Therefore, exploring the autophagy-related biomarkers in AD 
from the perspective of pathway crosstalk has become the 
direction of our exploration.

First, we obtained the pathways with crosstalk in AD as 
well as the crosstalk genes on the pathways by the PAGI algo-
rithm. We obtained 96 pathways with crosstalk, which further 
confirmed the extensive crosstalk between signaling pathways 
in AD. Then, by consulting the literature and annotating the 
autophagy genes of each pathway, 36 pathways were identified 
as autophagy-related crosstalk pathways. The genes on the 
pathways were identified as autophagy-related crosstalk genes 
and were reserved for further analysis. The results showed 
that autophagy-related crosstalk pathways in AD were mainly 
involved in the AD signaling pathway, mTOR signaling path-
way, calcium signaling pathway, Wnt signaling pathway, apop-
tosis, insulin signaling pathway, neurotrophin signaling path-
way, Type II diabetes mellitus, and other pathways.

These signaling pathways are closely related to the progres-
sion of AD. The mTOR signaling pathway is a crucial regulator 
of autophagy in AD. Previous studies have found that increas-
ing mammalian target of mTOR signaling raises tau levels and 
phosphorylation [41]. Intracellular calcium signaling (Ca2+) 
pathway dysregulation is centrally involved in AD patho-
genesis (the aggregation of pathogenic Aβ, synapse loss and 

FIGURE 8. Relative expression levels of CD40 in Alzheimer’s disease and control sample (“*” represents p < 0.05, “**” rep-
resents p < 0.01, “***” represents p < 0.001). (A) frontal cortex of GSE118553; (B) hippocampus of GSE5281; and (C) posterior 
cingulate of GSE5281.

CBA

FIGURE 9. Relative expression levels of SMAD7 in Alzheimer’s disease and control sample (“*” represents p < 0.05, “**” rep-
resents p < 0.01, “***” represents p < 0.001). (A) Entorhinal cortex of GSE118553; (B) temporal cortex of GSE118553; and 
(C)  Syn4009614.

CBA
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dysfunction and phosphorylation of tau) [34]. Furthermore, 
our results found that the calcium signaling pathway had a 
higher crosstalk score (pathway score = 0.57959). Multiple sig-
naling pathways have been reported to play an important role 
in AD by regulating Ca2+ homeostasis, including Wnt signaling 
pathway, neurotrophin signaling pathway and apoptosis [2].

The above results revealed that Ca2+ might be involved 
in the occurrence and progression of AD through extensive 
crosstalk with other pathways. Insulin is a crucial factor regu-
lating cell growth, autophagy, synaptic plasticity and cognitive 
function. Dysregulation of insulin signaling can cause neuro-
fibrillary tangles and Aβ plaques (the main pathological fea-
tures of AD) [36]. The above results indicate that the pathways 
we screened and the crosstalk genes on the pathways play a 
crucial role in the AD occurrence, as well as pathological 
progression.

We also performed functional enrichment analysis of 
autophagy-related crosstalk genes obtained by WGCNA, 
which revealed that these autophagy-related crosstalk genes 
were mainly involved in PI3K-Akt signaling pathway, MAPK 
signaling pathway, calcium signaling pathway, insulin signaling 
pathway and neurotrophin signaling pathway. Previous stud-
ies have found that enhancing the PI3K-Akt signaling pathway 
in the central nervous system can improve memory function 
in vivo in mouse AD models and human trials [31]. MAPK 
signaling cascades play a role in mediating the AD-related 
pathological effects of apoE4 in the hippocampus [32]. The 
above results indicate that the crosstalk genes on the pathways 
also play a crucial role in ADs occurrence and pathological 
progression.

Molecular biology analysis of autophagy-related 
prognostic genes

Multivariate Cox regression analysis was performed to 
construct a prognostic gene model based on two prognos-
tic autophagy-related crosstalk genes (CD40 and SMAD7), 
which could predict the overall survival of AD patients with 
medium-to-high accuracy. The CD40 receptor is a member 
of the tumor necrosis factor superfamily of transmembrane 
receptors. A  previous study found that the pathological fea-
tures (such as amyloid burden, astrocytosis and microglio-
sis that are typical of AD-like pathology in these transgenic 
mouse strains) are reduced in mouse models deficient for 
CD40 compared with their littermates where CD40 is pres-
ent  [42]. In addition, the pattern of expression of CD40 has 
been reported to be altered in the brains of AD patients as well 
as in several animal models of AD [43].

In this study, the expression level of CD40 in AD patients 
was higher than that in controls, which indicated that high 
expression of CD40 was associated with AD pathological 

progression. It has been suggested to play a role in Aβ metab-
olism in AD [44]. Interaction of CD40 with its ligand CD40L 
mediates a broad range of immune and inflammatory 
responses in the periphery and in the central nervous sys-
tem  [45]. Innate immune and inflammatory responses play an 
important role in the accumulation and progression of amy-
loid in AD [46]. Dyad of CD40/CD40 ligand fosters neuroin-
flammation at the blood–brain barrier (BBB) and is regulated 
through JNK signaling [47]. The BBB plays a key role in the 
generation and maintenance of chronic inflammation during 
AD [48].

These combined evidence suggest that CD40 has a broad 
role in AD. Previous studies have reported that nuclear 
SMAD7 and TGF-beta1 levels were markedly upregulated in 
cortical brain regions of the TgCRND8 mice (a mouse model 
of familial AD) [49]. Moreover, TGF-beta1 may amplify Aβ 
(1-42) (accumulation of the Aβ peptide in the brain is a cru-
cial factor in the development of AD)-mediated neurode-
generation in AD through SMAD7 and beta-catenin inter-
action and nuclear localization. Another study showed that 
inhibiting cellular SMAD7 levels significantly ameliorated 
the Aβ (1-42)-mediated suppression of TGF-beta1-inducible 
transcription reporter activity, whereas SMAD7 transfection 
downregulated TGF-beta1-inducible transcription reporter 
activity [50]. Our results revealed that the expression level of 
SMAD7 was higher in AD patients than in controls, suggest-
ing that inhibition of SMAD7 may be beneficial for AD.

Our study has some limitations. In vivo and in vitro exper-
iments should be performed to further confirm our results. 
In summary, we performed comprehensive bioinformatics 
analysis and identified the autophagy-related prognostic gene 
signature containing two genes (CD40 and SMAD7) for AD 
patients.

CONCLUSION

AD is a multifactor disease involving multiple signaling 
pathways, and the current methods for exploring new thera-
peutic targets need to be further enriched. Therefore, consid-
ering the core role of autophagy in AD and its interaction with 
other signaling pathways, this article provides a new method 
for mining autophagy-related biomarkers in AD. The molec-
ular mechanism of autophagy in AD has not been explored 
from the perspective of pathway crosstalk. This article used 
the DESeq2 package to screen out differentially expressed 
lncRNAs.

The PAGI algorithm was used to explore the pathways 
related to AD, and the crosstalk pathways related to autophagy 
were screened through the number of autophagy genes in the 
pathways and literature. The mRNAs on the crosstalk path-
ways related to autophagy were reserved as feature mRNAs. 
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The WGCNA algorithm was used to extract the coexpression 
module of feature mRNAs and lncRNAs. Next, we applied 
clinical data to the genes in the coexpression module to obtain 
prognostic genes. Finally, CD40 and SMAD7 were identified 
as prognostic genes in AD. Based on the external AD dataset 
and literature, the role of the extracted prognostic genes in 
AD was confirmed. However, the exact mechanism underly-
ing how these genes affected the prognosis of AD should be 
verified by more accurate experiments.
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SUPPLEMENTAL TABLE 2. Thirty-six autophagy-related pathways

Pathway name Size Pathway ID Pathway score Autophagy
Pathways in cancer 268 path: hsa05200 0.43999 39
Protein processing in endoplasmic reticulum 152 path: hsa04141 0.44823 27
MAPK signaling pathway 219 path: hsa04010 0.51284 20
Apoptosis 70 path: hsa04210 0.44783 17
ErbB signaling pathway 78 path: hsa04012 0.53336 16
Focal adhesion 167 path: hsa04510 0.54818 16
Hepatitis C 99 path: hsa05160 0.46977 16
Insulin signaling pathway 119 path: hsa04910 0.51274 16
mTOR signaling pathway 46 path: hsa0415 0.48142 16
Neurotrophin signaling pathway 114 path: hsa04722 0.54769 15
Chronic myeloid leukemia 68 path: hsa05220 0.46647 14
Toll-like receptor signaling pathway 63 path: hsa04620 0.42614 14
Alzheimer’s disease 132 path: hsa05010 0.42487 13
Chagas disease 80 path: hsa05142 0.50219 13
Chemokine signaling pathway 118 path: hsa04062 0.54436 12
Colorectal cancer 60 path: hsa05210 0.56606 12
NOD-like receptor signaling pathway 45 path: hsa04621 0.53817 12
Small cell lung cancer 76 path: hsa05222 0.41707 12
RIG-I-like receptor signaling pathway 47 path: hsa04622 0.50676 11
Endocytosis 174 path: hsa04144 0.42422 10
Glioma 58 path: hsa05214 0.57765 10
Phagosome 110 path: hsa04145 0.49985 10
Regulation of actin cytoskeleton 165 path: hsa04810 0.54832 10
Adipocytokine signaling pathway 54 path: hsa04920 0.57427 9

SUPPLEMENTAL TABLE 1. Top 30 differential genes

Id log2FC p-value padj Regulate
AC009063.2 0.770513051 1.63E-10 4.09E-07 Upregulated
AC008737.3 0.932512925 4.95E-10 7.46E-07 Upregulated
AL450313.1 1.79036646 1.16E-09 1.45E-06 Upregulated
LINC01736 0.810530425 1.09E-08 1.02E-05 Upregulated
AC243964.2 1.221925555 1.62E-08 1.36E-05 Upregulated
LINC02172 0.751632155 1.32E-07 5.25E-05 Upregulated
AL390066.1 0.561995855 4.48E-07 0.000116451 Upregulated
LINC01134 0.667604638 6.04E-07 0.000142305 Upregulated
LINC01445 0.569507479 8.44E-07 0.00019293 Upregulated
AC002428.2 0.819012877 1.25E-06 0.000244382 Upregulated
AP003117.1 0.539248872 1.26E-06 0.000244382 Upregulated
AC127496.1 0.588155825 4.09E-06 0.000512292 Upregulated
AL355974.3 0.660144797 1.29E-05 0.001148947 Upregulated
LINC02397 0.968817228 2.11E-05 0.001638011 Upregulated
AC092155.1 0.777738272 2.27E-05 0.001708868 Upregulated
ERVH-1 –0.762166936 2.89E-10 5.45E-07 Downregulated
FAM225B –1.055485404 2.06E-08 1.42E-05 Downregulated
AC015819.3 –0.704015057 3.61E-08 2.01E-05 Downregulated
AC016576.1 –1.003937063 1.53E-07 5.50E-05 Downregulated
AC010266.2 –0.551501253 1.93E-07 6.13E-05 Downregulated
AC016205.1 –0.736957053 3.63E-07 0.000104717 Downregulated
AC018541.1 –1.022992779 1.11E-06 0.000238355 Downregulated
LINC01844 –0.555035901 1.45E-06 0.000270919 Downregulated
AC074351.1 –0.822739102 2.19E-06 0.000366291 Downregulated
LINC01476 –0.567521021 3.53E-06 0.000480776 Downregulated
AL353608.3 –0.620152796 3.57E-06 0.000480776 Downregulated
LINC00507 –0.551519082 3.92E-06 0.000501233 Downregulated
LINC01007 –0.62218615 4.14E-06 0.000512292 Downregulated
LINC02296 –0.686097709 4.89E-06 0.000562348 Downregulated
AC010425.1 –0.793469236 7.74E-06 0.000748242 Downregulated

(Contd...)

SUPPLEMENTAL DATA
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SUPPLEMENTAL TABLE 2. (Continued)

Pathway name Size Pathway ID Pathway score Autophagy
Endometrial cancer 48 path: hsa05213 0.53481 9
GnRH signaling pathway 78 path: hsa04912 0.56101 9
B-cell receptor signaling pathway 58 path: hsa04662 0.58792 8
T-cell receptor signaling pathway 76 path: hsa04660 0.55474 8
Long-term depression 54 path: hsa04730 0.60749 6
Type II diabetes mellitus 32 path: hsa04930 0.5506 6
Long-term potentiation 64 path: hsa04720 0.68263 5
Wnt signaling pathway 123 path: hsa04310 0.4932 5
Calcium signaling pathway 133 path: hsa04020 0.57959 4
Pancreatic cancer 62 path: hsa05212 0.56527 16
Toxoplasmosis 102 path: hsa05145 0.46928 15
Prostate cancer 76 path: hsa05215 0.50957 18

SUPPLEMENTAL TABLE 3. Crosstalk genes and their crosstalk scores on 10 autophagy-related crosstalk pathways

Alzheimer’s disease Calcium signaling pathway Insulin signaling pathway Neurotrophin signaling pathway
PLCB3 0.537 ITPKB 0.547 PRKX 0.709 NFKBIA 0.452
CALM3 0.488 PRKX 0.709 TRIP10 0.499 PIK3R5 0.619
PLCB1 0.491 PRKCG 0.581 RHOQ 0.467 CAMK4 0.357
CALM2 0.468 MYLK3 0.444 PIK3R5 0.619 MAPK8 0.56
ITPR1 0.406 PLCB3 0.537 PRKACA 0.62 MAPKAPK2 0.362
CACNA1D 0.396 TRPC1 0.42 MAPK8 0.56 CALM3 0.488
PPP3R1 0.395 CCKBR 0.38 PRKAG1 0.391 YWHAZ 0.346
CALM1 0.455 TACR2 0.373 PTPRF 0.358 SHC1 0.378
MAPK1 0.729 PRKACA 0.62 CALM3 0.488 MAPK14 0.648
CASP9 0.366 P2RX7 0.402 PRKCI 0.459 CDC42 0.547
PSEN2 0.334 CAMK4 0.357 SHC1 0.378 CALM2 0.468
NOS1 0.314 PDGFRB 0.437 CALM2 0.468 RPS6KA1 0.34
GRIN2A 0.343 CALM3 0.488 INPP5D 0.349 KRAS 0.516
SDHB 0.323 PLCB1 0.491 PRKAB1 0.36 NRAS 0.504
NDUFA5 0 CALM2 0.468 KRAS 0.516 CALM1 0.455
PPP3CB 0.37 HTR5A 0.316 NRAS 0.504 MAPK12 0.635
GRIN2D 0.337 ERBB3 0.411 PRKACB 0.577 YWHAE 0.309
ATP2A2 0.329 TBXA2R 0.317 CALM1 0.455 MAPK1 0.729
GSK3B 0.404 ITPR1 0.406 PCK1 0.396 MAPK10 0.517
GAPDH 0.35 CACNA1D 0.396 MAPK1 0.729 PSEN2 0.334
SDHC 0.308 PRKACB 0.577 MAPK10 0.517 AKT3 0.453
NAE1 0.294 PPP3R1 0.395 PRKAA2 0.353 BRAF 0.355
MAPT 0.304 CALM1 0.455 AKT3 0.453 CAMK2D 0.336
UQCR10 0 ADRA1D 0.315 BRAF 0.355 YWHAQ 0.288
CDK5R1 0.343 ADCY1 0.407 HK1 0.476 GSK3B 0.404
APP 0.392 VDAC1 0.35 GSK3B 0.404 MAPK9 0.499
UQCRC2 0 NOS1 0.314 MAPK9 0.499 BDNF 0.271
NDUFB5 0 GRIN2A 0.343 PYGB 0.328 MAGED1 0.262
APH 1A 0.258 SLC8A2 0.337 PYGM 0.328 YWHAG 0.27
GRIN2B 0.312 CAMK2D 0.336 PRKAR1A 0.276 TRAF6 0.415
NDUFA6 0 PTAFR 0.288 RHEB 0.337 SHC3 0.315
SDHD 0.278 CACNA1E 0.365 FLOT2 0.264 RPS6KA6 0.282
NDUFA10 0 PPP3CB 0.37 SHC3 0.315 MAP2K5 0.267
COX8A 0 GRIN2D 0.337 PTPN1 0.246 IRAK2 0.267
NDUFC2 0 ATP2A2 0.329 MAP2K1 0.314 KIDINS220 0.252
SDHA 0.273 ATP2B2 0.323 EIF4E2 0.261 ARHGDIA 0.255
PPP3CA 0.322 CHRM1 0.281 PIK3R1 0.511 CAMK2A 0.295
NDUFA9 0 ERBB4 0.521 PRKAR1B 0.237 MAP2K1 0.314
CYCS 0.319 VDAC2 0.323 GRB2 0.321 NGFR 0.446
ADAM17 0.247 ATP2B3 0.317 TSC1 0.245 YWHAH 0.242
COX7B 0 PTK2B 0.346 PDPK1 0.303 NFKBIB 0.26
COX7A2L 0 HRH2 0.257 PRKCZ 0.365 PIK3R1 0.511
NDUFC1 0 ATP2B1 0.303 IKBKB 0.34 GRB2 0.321
CAPN2 0.242 GRM5 0.327 EIF4EBP1 0.259 NTRK3 0.255

(Contd...)
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SUPPLEMENTAL TABLE 3. (Continued)

Alzheimer’s disease Calcium signaling pathway Insulin signaling pathway Neurotrophin signaling pathway
COX6B1 0 CACNA1B 0.336 ACACB 0.295 IKBKB 0.34
CASP7 0.245 CACNA1G 0.334 PRKAR2B 0.216 MAP2K7 0.453
NDUFV1 0 NOS2 0.316 PHKB 0.229 HRAS 0.42
SNCA 0 SLC8A3 0.296 SOCS4 0.28 RAC1 0.616
CACNA1F 0.276 CAMK2A 0.295 HRAS 0.42 GAB1 0.221
GNAQ 0.45 CHRM3 0.247 SH2B2 0.213 MAPK13 0.565
ATP2A3 0.251 HTR2A 0.238 MKNK1 0.246 SH2B2 0.213
APBB1 0.228 GNAS 0.529 HK2 0.406 YWHAB 0.209
NCSTN 0.212 CHRM2 0.238 INSR 0.245 PIK3CB 0.468
NDUFAB1 0 PPP3CA 0.322 PPARGC1A 0.2 RIPK2 0.391
NDUFB6 0 PDE1B 0.269 PIK3CB 0.468 PDK1 0.196
COX7A2 0 ADCY2 0.325 PRKAG2 0.24 RELA 0.395
NDUFA4 0 CD38 0.275 PHKG2 0.208 SH2B1 0.194
ATF6 0.216 P2RX6 0.265 PPP1CA 0.258 MAPK3 0.658
NDUFS1 0 VDAC3 0.274 MAPK3 0.658 CSK 0.276
NDUFS6 0 PDE1A 0.26 MTOR 0.367 RPS6KA5 0.19
NDUFS4 0 ADRA1B 0.223 PPP1R3B 0.198 MAPK11 0.549
NDUFB4 0 PHKB 0.229 PPP1R3C 0.197 BCL2 0.233
UQCRQ 0 SLC25A5 0.261 EXOC7 0.196 SOS1 0.291
UQCRH 0 CACNA1F 0.276 LIPE 0.228 RPS6KA3 0.191
NDUFA2 0 TACR1 0.207 PPP1CC 0.244 PLCG1 0.341
MAPK3 0.658 PRKCB 0.372 EIF4E 0.197 NFKB1 0.372
BACE1 0 GNAQ 0.45 SOS1 0.291 RHOA 0.438
CYC1 0 SPHK1 0.236 PRKAB2 0.212 RAP1A 0.252
UQCRFS1 0 PPID 0.26 ACACA 0.251 CRK 0.306
COX6C 0 ATP2A3 0.251 RPS6KB1 0.214 NTRK2 0.199
PPP3CC 0.279 GRM1 0.269 RPTOR 0 FOXO3 0.121
CDK5 0.23 SLC25A4 0.25 TSC2 0.315 NFKBIE 0.133
COX5A 0 SLC8A1 0.241 FOXO1 0.19 ZNF274 0.115
NDUFS3 0 PHKG2 0.208 PPP1CB 0.224 RAP1B 0.224
NDUFA3 0 GNAL 0.342 PDE3B 0.255 PIK3CD 0.404
COX7C 0 RYR2 0.249 PCK2 0.254 ABL1 0.24
CACNA1C 0.278 ADCY7 0.287 ELK1 0.224 IRAK1 0.172
COX4I1 0 PPP3CC 0.279 CRK 0.306 MAP2K2 0.193
LPL 0.223 PLCE1 0.269 SREBF1 0.165 SOS2 0.228
PLCB4 0.361 CACNA1C 0.278 CBLB 0.238 IRAK4 0.159
NDUFB11 0 PLCB4 0.361 FASN 0.173 PRDM4 0.0928
NDUFB3 0 PDE1C 0.212 RPS6KB2 0.173 AKT1 0.288
NDUFA12 0 PLCG1 0.341 PDE3A 0.226 JUN 0.158
COX5B 0 P2RX5 0.201 PHKG1 0.134 RPS6KA4 0.0942
NDUFA1 0 ATP2B4 0.201 PIK3CD 0.404 FRS2 0.0778
NDUFS5 0 GNA14 0.375 SORBS1 0.209 IRAK3 0.0954
UQCRC1 0 NTSR1 0.151 MAP2K2 0.193 RPS6KA2 0.101
NDUFA8 0 TNNC2 0.204 GYS1 0.148 MAPK7 0.143
NDUFB2 0 CACNA1H 0.219 PRKAA1 0.174 SORT1 0.0689
GRIN1 0.257 PRKCA 0.323 PYGL 0.17 CALML6 0.256
IDE 0 ADCY4 0.262 SOS2 0.228 BAX 0.0914
CAPN1 0.165 GRIN1 0.257 AKT1 0.288 PTPN11 0.0838
NDUFV3 0 PLCD3 0.284 HK3 0.315 MAP3K1 0.333
UQCRB 0 ADCY3 0.277 PRKAR2A 0.08 RAPGEF1 0.0913
NDUFS7 0 CACNA1A 0.229 RPS6 0.0767 MAP3K5 0.163
APAF1 0.133 ERBB2 0.168 CALML6 0.256 AKT2 0.25
NDUFB10 0 PHKG1 0.134 SOCS3 0.145 CRKL 0.228
NDUFS2 0 ADRB1 0.134 PHKA2 0.0812 SHC4 0.116
NDUFB7 0 OXTR 0.108 FLOT1 0.0593 ARHGDIB 0.0556
NDUFB8 0 CYSLTR2 0.0993 RAPGEF1 0.0913 PIK3CA 0.353
CASP3 0.236 GNA15 0.328 CBL 0.168 IRS1 0.114
FAS 0.125 EDNRA 0.0949 AKT2 0.25 BAD 0.127
NDUFS8 0 ITPKA 0.17 CRKL 0.228 SH2B3 0.0405

(Contd...)
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SUPPLEMENTAL TABLE 3. (Continued)

Alzheimer’s disease Calcium signaling pathway Insulin signaling pathway Neurotrophin signaling pathway
NDUFB1 0 ADCY8 0.223 GCK 0.123 PSEN1 0.0927
NDUFA4L2 0 P2RX4 0.128 SHC4 0.116 CAMK2G 0.0927
UQCRHL 0 PDGFRA 0.249 PIK3CA 0.353 RAF1 0.103
LRP1 0.107 ADORA2B 0.0724 IRS1 0.114 CAMK2B 0.0775
UQCR11 0 EGFR 0.296 SLC2A4 0.198 PLCG2 0.21
ERN1 0.141 RYR3 0.137 BAD 0.127 MAP3K3 0.0554
CASP8 0.157 MYLK 0.134 SOCS2 0.116 ATF4 0.166
BACE2 0 CALML6 0.256 PHKA1 0.0525 SHC2 0.0791
TNFRSF1A 0.125 HRH1 0.0627 MKNK2 0.0757 TP53 0.895
PSENEN 0.0977 PHKA2 0.0812 RAF1 0.103 IRS2 0.079
RYR3 0.137 NOS3 0.0798 PPP1R3D 0.0376 PIK3R3 0.329
BID 0.0755 PLCD1 0.204 SHC2 0.0791
CALML6 0.256 ITPR3 0.143 EIF4E1B 0.0421
HSD17B10 0.0902 EDNRB 0.0479 IRS2 0.079
NDUFA13 0 CAMK2G 0.0927 PIK3R3 0.329
ITPR3 0.143 PHKA1 0.0525 ARAF 0.0631
FADD 0.155 CACNA1I 0.105
APOE 0.0494 PLCB2 0.237
BAD 0.127 DRD1 0.0298
ADAM10 0.0387 ADRA1A 0.0346
NDUFA11 0 GRIN2C 0.0868
COX6A1 0 SPHK2 0.0557
PSEN1 0.0927 ADCY9 0.136
PLCB2 0.237 PLCD4 0.176
COX7A1 0 CAMK2B 0.0775
GRIN2C 0.0868 ITPR2 0.114
ITPR2 0.114 RYR1 0.0793
ATP2A1 0.0671 PLCG2 0.21

ATP2A1 0.0671
GNA11 0.258

SUPPLEMENTAL TABLE 4. Genes associated with other diseases

Disease Gene
Mitochondrial complex I 
deficiency

NDUFA11; NDUFS7; NDUFS4; NDUFS8; NDUFV1; NDUFS1; NDUFS2; NDUFS3; NDUFS6; NDUFA1; NDUFA2; 
NDUFA10; NDUFB9; NDUFB3; NDUFA9; NDUFB8; NDUFA6; NDUFB10; NDUFC2; NDUFA8; NDUFA13; NDUFA12; 
NDUFB11

Colorectal cancer CTNNB1; DCC; APC; MSH6; KRAS; SMAD4; MLH1; MSH2; MSH3; SMAD2; PIK3CA; BAX; CCND1; TGFA; TGFBR2; 
BRAF; TP53; AXIN2

Hepatocellular carcinoma CDKN2A; CTNNB1; HGF; IGF1R; MET; MYC; NFE2L2; PIK3CA; RB1; PTEN; TGFA; TGFBR2; TP53; FZD7; AXIN1; CASP8
Autosomal dominant intellectual 
developmental disorder

CACNG2; CTNNB1; CLTC; AP2M1; DYNC1H1; GRIN2B; GRIN1; GNB1; MEF2C; PPP2R5D; PPP2R1A; RAC1; 
TBL1XR1; CAMK2A; CAMK2B; CAMK2G

Gastric cancer CDKN1B; CTNNB1; ERBB2; FGFR2; APC; KRAS; MET; MLH1; NRAS; PIK3CA; RARB; TGFBR1; TP53; CCNE1; CDH1
Thyroid cancer TFG; TPM3; CTNNB1; HRAS; KRAS; NRAS; PPARG; RET; CCDC6; NCOA4; BRAF; TPR; TP53; CDH1
Diffuse large B-cell lymphoma GNA13; CDKN2A; CDKN2B; CREBBP; EP300; GNA12; FOXO1; MYC; MYD88; PTEN; BCL2; TNFAIP3; TP53; CARD11
Early infantile epileptic 
encephalopathy

DNM1; FGF12; FGF13; PLCB1; CYFIP2; GNAO1; GRIN2B; GRIN2D; NTRK2; ATP6V1A; PPP3CA; CACNA1A; 
YWHAG; CACNA1E

Non-small-cell lung cancer CDKN2A; RASSF1; EGFR; FHIT; KRAS; IRF1; MET; PIK3CA; PPP2R1B; RET; BRAF; TP53
Dilated cardiomyopathy CRYAB; HLA-DRB1; HLA-DPA1; HLA-DPB1; HLA-DQA1; HLA-DQB1; LAMA4; PSEN1; PSEN2; RAF1; SDHA; VCL; ACTN2
Noonan syndrome and related 
disorders

HRAS; KRAS; ARAF; NF1; NRAS; MAP2K1; MAP2K2; PPP1CB; PTPN11; SOS1; BRAF; SOS2; CBL

Glioma CDK4; CDKN2A; ERBB2; EGFR; MDM2; PDGFA; PDGFB; PDGFRA; PDGFRB; PTEN; RB1; TP53
Medulloblastoma APC; APC2; CTNNB1; MYC; MDM2; SUFU; PTCH1; SMO; TP53; PTCH2; AXIN1; AXIN2
Esophageal cancer CDKN2A; EGFR; DCC; APC; FAS; NOS2; PTGS2; RB1; TGFBR2; TP53
Ovarian cancer CTNNB1; ERBB2; AKT2; AKT1; KRAS; MSH2; MLH1; MYC; PIK3CA; TP53; CDH1
Chronic myeloid leukemia CDKN2A; MECOM; BCR; ABL1; RB1; TP53; RUNX1
Alzheimer’s disease ADAM10; APP; APOE; PSEN1; PSEN2
Endometrial cancer CTNNB1; ERBB2; KRAS; MLH1; MSH3; PTEN; TP53; CDH1
Pancreatic cancer CDKN2A; ERBB2; KRAS; SMAD4; STK11; TP53
Prostate cancer CDKN1B; ELK4; AR; NKX3-1; PTEN
Type II diabetes mellitus CDKN2A; CDKN2B; KCNJ11; PPARG; TCF7L2; WFS1
Small-cell lung cancer FHIT; MYC; PPP2R1B; BCL2; RB1; PTEN; TP53
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SUPPLEMENTAL TABLE 5. Definition of survival time and survival status of AD patients. Because the age of patients over 90 
years old in the clinical data is shown as 90+, we set the observation starting point as the time of diagnosis of each patient and 
the observation ending point as 90 years old. The survival status of patients with a death age of 90 + is alive, while the survival 
status of patients with a death age of less than 90 is dead, and the survival time of 82 patients was finally obtained. The clinical 
data downloaded from the AMP-AD database were sorted and screened, and then, the survival time and clinical characteristics 
(braaksc, ceradsc, and dcfdx_lv: Clinical cognitive diagnosis summary at last visit) of 82 patients were obtained

Endocytosis Protein processing in endoplasmic reticulum Wnt signaling pathway Apoptosis
HSPA2 0.445 HSPA2 0.445 PRKX 0.709 PRKX 0.709
LDLRAP1 0.421 DDOST 0.421 PRKCG 0.581 NFKBIA 0.452
TGFB3 0.42 SSR4 0.454 FZD9 0.423 PIK3R5 0.619
TGFB1 0.384 SKP1 0.392 PLCB3 0.537 PRKACA 0.62
VPS25 0.342 MAPK8 0.56 TCF7L1 0.436 PRKACB 0.577
PRKCI 0.459 HSP90B1 0.374 PRKACA 0.62 PPP3R1 0.395
CDC42 0.547 DNAJC10 0.367 NFATC4 0.38 CASP9 0.366
ERBB3 0.411 UBE2D1 0.367 SKP1 0.392 AKT3 0.453
AP2B1 0.328 SEC31A 0.446 MAPK8 0.56 PPP3CB 0.37
CXCR4 0.337 SEC63 0.375 WNT10B 0.363 IKBKG 0.569
TSG101 0.453 HSP90AB1 0.339 PLCB1 0.491 PRKAR1A 0.276
RAB11A 0.384 SAR1A 0.36 PPP2R1A 0.38 IL1RAP 0.298
SMAD3 0.434 FBXO2 0.304 PRKACB 0.577 IRAK2 0.267
RAB5C 0.33 TUSC3 0.322 PPP3R1 0.395 TNFRSF10D 0.251
RAB11FIP2 0.325 MAPK10 0.517 NFATC2 0.321 CASP6 0.26
VTA1 0.334 DDIT3 0.368 PORCN 0.316 PIK3R1 0.511
CHMP5 0.314 SEC61B 0.381 SMAD3 0.434 PRKAR1B 0.237
PARD3 0.304 SSR2 0.345 MAPK10 0.517 PPP3CA 0.322
AP2M1 0.295 SEC61G 0.38 NLK 0.305 CYCS 0.319
VPS37A 0.291 UBQLN1 0.301 CAMK2D 0.336 IKBKB 0.34
CLTC 0.289 PLAA 0.312 CSNK2A1 0.293 CAPN2 0.242
ASAP1 0.276 EIF2S1 0.312 PPP3CB 0.37 PRKAR2B 0.216
PIP5K1A 0.35 STT3B 0.335 MAP3K7 0.374 CASP7 0.245
DNM1L 0.292 UBE2E3 0.308 PPP2CA 0.339 PIK3CB 0.468
RAB5A 0.339 CKAP4 0.465 PPP2R5C 0.282 RELA 0.395
ERBB4 0.521 GANAB 0.378 GSK3B 0.404 PPP3CC 0.279
CHMP2A 0.295 MAPK9 0.499 MAPK9 0.499 CASP10 0.191
CHMP4A 0.296 DNAJC5G 0.345 CTNNB1 0.685 TNFRSF10B 0.178
TRAF6 0.415 DNAJA2 0.345 TBL1XR1 0.275 AIFM1 0
AP2A2 0.27 DNAJC5 0.344 FZD8 0.307 BCL2 0.233
MET 0.404 SEC61A2 0.372 ROCK1 0.326 RIPK1 0.186
CHMP1B 0.384 UBE2E2 0.304 PPP2R5E 0.258 NFKB1 0.372
DNM3 0.272 VCP 0.368 WNT10A 0.27 DFFA 0.168
VPS36 0.262 ERP29 0.274 CAMK2A 0.295 BIRC3 0.192
CHMP2B 0.279 DERL3 0.297 BTRC 0.267 CAPN1 0.165
PDCD6IP 0.291 UGGT2 0 FZD7 0.271 APAF1 0.133
ZFYVE16 0.249 SVIP 0.317 PPP3CA 0.322 EXOG 0
EPS15 0.265 HYOU1 0.39 LRP5 0.241 BIRC2 0.173
ARAP1 0 6-Mar 0.324 RBX1 0.443 CASP3 0.236
CHMP4B 0.275 UBQLN2 0.271 CHD8 0.215 PIK3CD 0.404
CSF1R 0.372 DNAJB11 0.278 CSNK2A2 0.221 FAS 0.125
AP2A1 0.249 SEL1L 0.245 PPP2R5D 0.217 IRAK1 0.172
DNM1 0.252 UBE2E1 0.276 SFRP2 0.239 TRAF2 0.189
AP2S1 0.246 MBTPS2 0 RUVBL1 0.22 MYD88 0.185
STAM 0.259 ERLEC1 0 RAC1 0.616 XIAP 0.153
CAV1 0.234 SEC23A 0.26 PRICKLE1 0.218 TNFSF10 0.177
RAB5B 0.269 MAN1A2 0.259 PRKCB 0.372 MAP3K14 0.182
RAB11FIP4 0.263 DERL2 0.257 CUL1 0.239 IRAK4 0.159
PRKCZ 0.365 RAD23A 0.375 PPP2R5B 0.205 ENDOD1 0
SMAP2 0 CALR 0.263 CSNK1A1 0.207 AKT1 0.288
PSD4 0 RBX1 0.443 FRAT2 0.196 CASP8 0.157
EHD3 0.224 EIF2AK1 0.259 PPP2CB 0.248 TNFRSF1A 0.125
PSD2 0 NSFL1C 0.271 PPP3CC 0.279 IRAK3 0.0954
RAB7A 0.253 SEC13 0.351 CCND2 0.282 BCL2L1 0.1
EEA1 0.271 BCAP31 0.285 RAC3 0.506 TRADD 0.145

(Contd...)
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SUPPLEMENTAL TABLE 5. (Continued)

Endocytosis Protein processing in endoplasmic reticulum Wnt signaling pathway Apoptosis
KIT 0.334 HSPA8 0.258 CTNNBIP1 0.176 PRKAR2A 0.08
HSPA8 0.258 EDEM1 0 SOX17 0.186 BID 0.0755
SH3GL2 0.234 CAPN2 0.242 PLCB4 0.361 BAX 0.0914
AGAP2 0 RPN2 0.242 DAAM2 0.171 CFLAR 0.0684
PSD3 0 RAD23B 0.364 PPP2R1B 0.234 AKT2 0.25
NEDD4L 0.259 PDIA3 0 NFATC1 0.176 IL1R1 0.0976
HRAS 0.42 SSR1 0.281 TBL1X 0.166 PIK3CA 0.353
DNAJC6 0 MAP2K7 0.453 DAAM1 0.163 ENDOG 0
MDM2 0.25 SEC62 0.259 SFRP1 0.192 FADD 0.155
HGS 0.22 MAN1B1 0.237 CACYBP 0 BAD 0.127
PIP5K1B 0.283 SEC23B 0.235 DVL3 0.36 CHUK 0.132
CLTA 0.21 HSPBP1 0 NKD2 0.151 TP53 0.895
IQSEC2 0 CUL1 0.239 RHOA 0.438 ATM 0.0249
VPS45 0 UBXN6 0.251 FZD1 0.192 PIK3R3 0.329
SH3KBP1 0.213 HSPA4L 0 CCND3 0.252 DFFB 0.0197
FLT1 0.273 XBP1 0.21 WNT3 0.172 PRKX 0.709
SMURF1 0.223 UBE2D2 0.232 PRICKLE2 0.157 NFKBIA 0.452
ARFGAP2 0 DERL1 0.235 PRKCA 0.323 PIK3R5 0.619
RAB31 0 CANX 0 FZD3 0.189 PRKACA 0.62
VPS4B 0.268 RPN1 0.223 PPP2R5A 0.147 PRKACB 0.577
SRC 0.264 ATF6 0.216 LEF1 0.224 PPP3R1 0.395
CHMP6 0.188 DNAJC1 0.225 TCF7L2 0.223 CASP9 0.366
SH3GLB2 0.197 MOGS 0.4 WNT7A 0.162 AKT3 0.453
PSD 0 SEC31B 0.323 LRP6 0.148 PPP3CB 0.37
RNF41 0.194 MAN1A1 0.217 ROCK2 0.21 IKBKG 0.569
ARAP3 0 EDEM3 0 FRAT1 0.132 PRKAR1A 0.276
GIT2 0 UBE4B 0.208 AXIN1 0.244 IL1RAP 0.298
ZFYVE9 0.171 SSR3 0.255 NKD1 0.124 IRAK2 0.267
ARRB2 0.174 RRBP1 0 PPARD 0.198 TNFRSF10D 0.251
SMAD7 0.184 HSPA5 0.22 AXIN2 0.238 CASP6 0.26
RAB22A 0 UBE2D3 0.212 SENP2 0.117 PIK3R1 0.511
PIP5KL1 0.189 EDEM2 0 NFAT5 0.131 PRKAR1B 0.237
ITCH 0.177 BCL2 0.233 FBXW11 0.146 PPP3CA 0.322
EHD2 0 SEC24B 0.203 TCF7 0.198 CYCS 0.319
RAB11FIP1 0.196 LMAN2 0 CTBP1 0.132 IKBKB 0.34
ACAP2 0 LMAN1 0 VANGL2 0.117 CAPN2 0.242
RAB11B 0.249 HSPH 1 0 SIAH1 0.0965 PRKAR2B 0.216
RHOA 0.438 P4HB 0.165 CSNK1E 0.147 CASP7 0.245
IQSEC1 0 STT3A 0.227 JUN 0.158 PIK3CB 0.468
RET 0.201 SEC24A 0.19 WNT5B 0.111 RELA 0.395
NEDD4 0.164 PREB 0.183 APC2 0.147 PPP3CC 0.279
RAB11FIP3 0.182 AMFR 0.22 FZD5 0.123 CASP10 0.191
STAM2 0.168 MBTPS1 0 WNT7B 0.0944 TNFRSF10B 0.178
ARFGAP1 0 DNAJB12 0.235 VANGL1 0.0865 AIFM1 0
PLD1 0.235 SIL1 0.297 FZD4 0.11 BCL2 0.233
SNF8 0.487 UBQLN4 0.174 SMAD2 0.229 RIPK1 0.186
CBLB 0.238 UBE2G1 0.174 DVL2 0.279 NFKB1 0.372
EPN1 0.146 SYVN1 0.236 CCND1 0.201 DFFA 0.168
HSPA1L 0.17 STUB1 0.183 CSNK2B 0.0591
GIT1 0.141 PDIA6 0.153 WNT5A 0.0751
GRK5 0.128 UBE2J2 0.17 APC 0.111
SH3GL3 0.144 UBE2J1 0.167 CREBBP 0.167
FGFR2 0.254 OS9 0 DVL1 0.262
FOLR2 0 DNAJA1 0.226 SMAD4 0.17
DNM2 0.142 CAPN1 0.165 CTBP2 0.0644
SMAD6 0.143 PPP1R15A 0.149 MYC 0.212
IQSEC3 0 RNF5 0.204 WNT2B 0.0626
VPS28 0.133 CRYAB 0 PSEN1 0.0927
STAMBP 0 MAN1C1 0.166 CAMK2G 0.0927
RUFY1 0.126 NGLY1 0.155 PLCB2 0.237

(Contd...)
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SUPPLEMENTAL TABLE 5. (Continued)

Endocytosis Protein processing in endoplasmic reticulum Wnt signaling pathway Apoptosis
GRK6 0.118 HSPA1L 0.17 CXXC4 0.0259
RAB4A 0.166 DNAJB2 0.207 FZD6 0.0723 mTOR signaling pathway
WWP1 0.133 EIF2AK4 0.16 CAMK2B 0.0775
ADRB1 0.134 FBXO6 0.119 RAC2 0.404 PIK3R5 0.619
TFRC 0 UGGT1 0 TP53 0.895 DDIT4 0.363
RABEP1 0.183 SEC24C 0.149 WIF1 0.0292 RPS6KA1 0.34
PLD2 0.212 NPLOC4 0.138 NFATC3 0.0251 MAPK1 0.729
TGFB2 0.148 WFS1 0 PRKAA2 0.353
ACAP1 0 TRAF2 0.189 Type II diabetes mellitus AKT3 0.453
EHD1 0.21 ATF6B 0.109 PGF 0.314
TGFBR2 0.146 SEC24D 0.138 PIK3R5 0.619 BRAF 0.355
RAB11FIP5 0.13 PRKCSH 0 MAPK8 0.56 RHEB 0.337
ARF6 0.217 ERN1 0.141 CACNA1D 0.396 RPS6KA6 0.282
ARRB1 0.0922 DAD1 0.124 MAPK1 0.729 EIF4E2 0.261
VPS37B 0.0939 HSP90AA1 0.122 MAPK10 0.517 PIK3R1 0.511
PDGFRA 0.249 BAK1 0.0861 ABCC8 0.295 ULK2 0.229
EHD4 0 EIF2AK3 0.125 HK1 0.476 STRADA 0
CLTB 0.0934 PDIA4 0.09 CACNA1E 0.365 TSC1 0.245
FGFR4 0.199 ATXN3 0 MAPK9 0.499 PDPK1 0.303
HSPA1A 0.121 HSPA1A 0.121 CACNA1B 0.336 EIF4EBP1 0.259
EGFR 0.296 EIF2AK2 0.114 CACNA1G 0.334 VEGFB 0.232
KDR 0.17 BAX 0.0914 PIK3R1 0.511 EIF4B 0.209
USP8 0 YOD1 0.158 IKBKB 0.34 PIK3CB 0.468
ASAP3 0.0689 SAR1B 0.132 SOCS4 0.28 MAPK3 0.658
SMAP1 0 BAG2 0 HK2 0.406 MTOR 0.367
HLA-A 0.084 NFE2L2 0.0926 INSR 0.245 EIF4E 0.197
ASAP2 0.0639 UBE2D4 0.101 PIK3CB 0.468 RPS6KA3 0.191
HLA-C 0.0801 MAP3K5 0.163 MAPK3 0.658 RPS6KB1 0.214
ARFGAP3 0 TRAM1 0.114 MTOR 0.367 CAB39 0
PARD6A 0.07 UBE2G2 0.0869 CACNA1C 0.278 RPTOR 0
ACAP3 0 HERPUD1 0.0481 CACNA1A 0.229 TSC2 0.315
SMAD2 0.229 HSPA1B 0.0827 PIK3CD 0.404 HIF1A 0.327
PARD6B 0.0661 DNAJB1 0.119 HK3 0.315 ULK1 0.121
HLA-E 0.0716 SEC61A1 0.152 KCNJ11 0.075 MLST8 0
CBL 0.168 DNAJC3 0.0571 SOCS3 0.145 RPS6KB2 0.173
PIP5K1C 0.144 ATF4 0.166 GCK 0.123 PIK3CD 0.404
GRK4 0.0525 BAG1 0 PIK3CA 0.353 PRKAA1 0.174
SH3GL1 0.0681 IRS1 0.114 CAB39L 0
PML 0.0582 SLC2A4 0.198 AKT1 0.288
LDLR 0.181 SOCS2 0.116 VEGFA 0.111
TGFBR1 0.0808 IRS2 0.079 RPS6KA2 0.101
SH3GLB1 0.062 PIK3R3 0.329 RPS6 0.0767
VPS37D 0.0502 AKT2 0.25
HSPA1B 0.0827 PIK3CA 0.353
VPS37C 0.0431 RICTOR 0
CLTCL1 0.045
CAV2 0.0316
HLA-F 0.0462
VPS4A 0.127
EPN2 0.0483
ARAP2 0
DAB2 0.0449
EPN3 0.043
IGF1R 0.219
SMURF2 0.0547
AGAP1 0
HLA-B 0.0319
FGFR3 0.137
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SUPPLEMENTAL FIGURE 1. Genes associated with other diseases act to Alzheimer’s disease pathway. The red rectangles repre-
sent biological processes involved in genes associated with other diseases.


