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DOI: 10.17305/bjbms.2022.7850
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REVIEW

VHL tumor suppressor as a novel potential candidate
biomarker in papillary thyroid carcinoma
Lidija Todorović 1∗ and Boban Stanojević 1 ,2 ,3

Papillary thyroid carcinoma (PTC) is the most common type of endocrine cancer, with an increasing incidence worldwide. The
treatment of PTC is currently the subject of clinical controversy, making it critically important to identify molecular markers that
would help improve the risk stratification of PTC patients and optimize the therapeutic approach. The Von Hippel–Lindau (VHL) tumor
suppressor gene has been implicated in tumorigenesis of various types of carcinoma and linked with their aggressive biological
behavior. The role of VHL in the origin and development of PTC have only recently begun to be revealed. In this narrative review, we
attempt to summarize the existing knowledge that implicates VHL in PTC pathogenesis and to outline its potential significance as a
candidate molecular biomarker for the grouping of PTC patients into high and low risk groups.

Keywords: Papillary thyroid cancer, papillary thyroid carcinoma (PTC), Von Hippel–Lindau (VHL), biomarker, risk stratification,
tumor suppressor.

Introduction
Thyroid cancer represents the most common malignancy
present in the endocrine organs. Over many decades its
incidence has increased worldwide, generating an additional
burden on healthcare systems. Papillary thyroid carcinoma
(PTC) alone makes up over 80% of all thyroid cancers and for
about 95% of the increased incidence worldwide [1, 2].

Molecular biomarker analysis is a significant addition to the
traditional pathological evaluation of carcinoma and represents
a valuable tool for improving diagnosis and refining clinical
management.Anumberof geneticmutations andothermolecu-
lar alterations can be detected infine-needle aspiration biopsies
(FNAB) of thyroid nodules and can be of help in diagnosing
cancer in a patient and treating patients with thyroid nod-
ules. TheAmerican ThyroidAssociation identifiedmutations in
seven genes and recommended, in its guidelines, that a seven-
genemolecular biomarker panel of genetic mutations and rear-
rangement be set up and tested in FNAB samples [3–5]. This
panel consists of BRAFV600E, three isoforms of RAS point muta-
tions and translocations of PAX8/PPARγ and RET/PTC genes.
The identification of any of these genetic changes in a thyroid
nodule would represent a higher risk of malignancy, which
is particularly important for a high number of patients who
present with non-specific FNAB cytology. However, there is
mounting evidence that the seven-gene MT test shows wide
variation, ranging from 44% to 100% [3–6].

Although important advances have beenmade in the identi-
fication of specific genetic alterations and the fundamental role

of several signaling pathways in thyroid cancer pathogenesis,
30%–35% of differentiated thyroid carcinomas, including PTC,
lack any of these alterations [7]. Therefore, a pressing need to
find new and more relevant molecular biomarkers to aid early
diagnosis of PTC in order to rule in the malignancy for cytology
indeterminate nodules exists.

Risk stratification of diagnosed patients represents another
major issue in PTC management. The key outcome to predict
is persistent/recurrent disease since, for the majority of PTC
cases, the mortality risk is low. PTC tumors are slow growing,
so patients usually have an excellent prognosis. However,
reports by several groups show that 20%–30% of cases develop
recurrence [8–10]. In rare cases, PTCmay progress to an undif-
ferentiated thyroid tumor, or the tumor may lose all the dif-
ferentiation markers and transform into an anaplastic thyroid
carcinoma (ATC), a very aggressive form of tumor which
is characterized by poor prognosis with very low survival
rates [10, 11]. Currently, theprognosis ofPTC is essentiallybased
on clinical and pathological factors; among them are: the pati-
ent’s age, tumor size, nodal and distant metastases, extrathy-
roid spread, and histotype [10, 12]. More recent studies suggest
thatmutational and expressionalmolecular alterations could be
a significant addition to conventional evaluation and a critical
addition towardpersonalized treatment of PTCpatients [13–16].

Von Hippel–Lindau (VHL) is a tumor suppressor gene, and
loss of its suppressor function is seen inheritable cancers linked
with VHL syndrome aswell as in some sporadic cancers [17, 18].
A number of reports have shown that VHL protein plays a
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critical role in oxygen signal transduction, but there is growing
evidence to suggest that the function of VHL is likely to extend
beyond this and that the loss of its function may result in
deregulation of several signaling pathways that have critical
roles in biological processes, notably cell proliferation, survival,
invasion, and metastasis [19, 20]. In recent years, several lines
of evidence, including our two studies, suggest that the VHL
gene plays an important role in the development and progres-
sion of PTC. This evidence is the focus of the present narrative
review.

Application scope and effect of existing
molecularmarkers of PTC
RET-RAS-RAF-MAPK pathway is commonly found activated in
PTC. It promotes cell growth, differentiation, proliferation, and
survival. TheRET/PTC gene rearrangements,RAS-family genes,
and point mutations in the BRAF are the most usual genetic
changes that activate this pathway in PTC. These genetic muta-
tions are responsible for up to 70%of all PTCs. These geneswork
independently of each other since each can result in uncon-
trolleddownstreameffects. They can thereforebe characterized
as virtually mutually exclusive [7, 21, 22].

RET gene rearrangements, known as RET/PTC, are iden-
tified in about 20% of adults with PTC, 40%–70% of chil-
dren and adolescents with sporadic PTC, and in 50%–86%
of irradiated patients [23]. RET/PTC1 and RET/PTC3 are the
most common RET/PTC rearrangements found in PTC. Some
pathological features of PTC, e.g., large tumor size and lymph
node involvement, are found to correlate with RET/PTC

rearrangements [24].
The most common mutation found in PTC in adults is the

thymidine to adenine conversion at nucleotide 1799 of exon
15 of the BRAF gene. This has a frequency of 29%–83%, and
results in a valine to glutamic acid substitution at amino acid
residue 600 (BRAFV600E) [22, 25]. To a lesser degree, BRAFV600E

is also detected in poorly differentiated thyroid carcinoma and
ATC arising from PTC. This accords with the results in model
cells, which suggest that BRAFV600E is involved in dedifferen-
tiation, genomic instability as well as increased invasiveness
of cancer [26]. Numerous studies show that BRAF mutation
correlates with advanced disease, the incidence in older age,
classical papillary as well as poor prognosis and poorer overall
survival [27].

Around 11% of PTCs are found to have RAS gene family
mutations (0%–11%) [28]. The highest incidence is found in
the follicular variant of PTC, 43%. Mutations in the RAS gene
generally affect codon 61 of H-RAS and N-RAS and, less often,
codons 12 and 13.Mutations in theother codonsand in theK-RAS
gene are rare [28]. Tumors, which harbor theRASmutation, are
invariably found encapsulated, have a follicular morphology,
and show lower rates of nodal disease resulting in a more
favorable prognosis. Furthermore, other studies have shown
a high rate of RAS mutations in benign tumors, e.g., up to 50%
micro follicular adenomaspossessRASmutations. This suggests
that these genetic mutations may be the result of an early
event in follicular thyroid tumorigenesis [29].Additionally,RAS

mutations are also found in about 50% of poorly differentiated
and ATCs and these mutations correlate with poor patient
survival [30]. This is highly indicative of the distinct roles that
RASmay play in the early and late stages of thyroid cancer.

In one of our earlier studies [31], the above-mentioned
genetic alterations were detected in 150 of 266 Serbian PTC
patients (56.4%). BRAFV600E was the most abundant muta-
tion noted (84/266, 31.6%). RET/PTC rearrangements were
found in 55/266 (20.7%) cases, the RAS mutations were the
least frequently seen (11/ 266, 4.1%). We concluded that
following radical thyroid surgery followed by radioiodine
ablation, BRAFV600E may not be an appropriate measure of poor
disease-free survival during the early and middle follow-up
period [31].

Other genetic alterations have been identified in PTC, such
as PTEN and PIK3CA mutations [7]. However, their prevalence
of approximately 1%–2% and lack of specificity limit their
biomarker potential in PTC. In the past decade, a significant
number of studies were focused on telomerase reverse tran-
scriptase (TERT) promoter mutations in thyroid cancer, as
reviewed in [32]. Two TERT promoter mutations, C228T and
C250T, have been identified, having a prevalence of 11.3% in
PTC. Theyhave been found to be associatedwith aggressive PTC
features, tumor recurrence, and patient mortality. Moreover,
in coexistence with BRAFV600E, they show a strong synergistic
effect on PTC aggressiveness [32].

A number of gene expression profiles have been identified
and proposed for the prediction/prognosis of PTC by various
studies [33–36]. However, this is an evolving field and these
results need to be reproduced and confirmed by other studies
in order to pave their way to clinical practice.

Aside from the gene expression at the mRNA level, expres-
sion alterations at the protein level might also have a signif-
icant biomarker potential in PTC. A recent systematic review
and meta-analysis of the programmed death-ligand 1 (PD-L1)
expression level in thyroid carcinoma pointed to the PD-L1 pro-
tein expression as a potential biomarker of disease-recurrence
in patients with PTC [37].

MicroRNA expression profiles have also been the focus
of a plethora of studies investigating their potential as diag-
nostic/prognostic/predictive biomarkers in PTC and a great
number of microRNAs have been found to have deregulated
expression [38, 39]. A meta-analysis, including 15 studies
involving 807 PTC patients, found that expression levels of
miRs-21, -34b, -130b, -135b, -146b, -151, -181b, -199b-5p, -221,
-222, -451, -623, -1271, -2861, and let-7e showed significant
association with at least one aggressive feature, such as
large tumor size, extrathyroidal extension, multifocality,
vascular invasion, lymph node metastases, distant metastasis,
advanced TNM stage, and presence of the BRAF(V600E)
mutation [40]. According to several reports, PTC is most
consistently associated with the overexpression of miR-
146b, miR-221, and miR-222. Considering that overexpres-
sion of these three microRNAs is frequently associated with
more aggressive PTC features, their expression profile has
been proposed as a potential prognostic biomarker of PTC
[39, 41, 42].
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Figure 1. VHL gene and protein structure. The figure is modified under CC BY, based on [133].

VHL tumor suppressor
VHL gene
The VHL gene, located on chromosome 3p25, is 10 kb and
comprises of three exons (Figure 1). Distinct isoforms, derived
from alternative spliced transcripts have been observed.
The best studied is transcript variant 1, which contains all
three exons and results in two translation products: a 28- to
30-kDa 213 amino acid protein (pVHL30) translated from the
first methionine codon and an 18- to 19-kDA 160 amino acid
protein (pVHL19), translated from the second methionine at
codon 54. In comparison to pVHL30, the first 53 amino acids
are absent from pVHL19 and are less evolutionarily conserved
than the rest of the protein [17]. The functional significance of
this region isunclear. BothpVHL19andpVHL30arebiologically
active, have equivalent effects in functional assays, and display
tumor suppressor activity in in vivo assays [43–47].

VHL disease is a cancer syndrome which is inherited in a
dominantmanner and its development predisposes to anumber
of other cancers linked to mutations in the VHL gene. The
disease shows marked variation in expression with multifocal
and highly vascularized tumors in both mesenchymal and
neural crest-derived tissues of multiple organ systems, such as
the endocrine system (islet cell tumor), central nervous system
(haemangioblastoma—CNS HB), adrenal medulla (pheochro-
mocytoma—PHE), eye (retinal haemangioblastoma—RB), and
kidney (clear renal cell carcinoma—cRCC) [17, 18]. Most of
the VHL disease cases examined have been shown to exhibit
autosomal inherited germline mutations in the VHL gene with
over 1000 germline and somatic mutations reported [48].
Within the characterized gene alterations, missense mutations
account for approximately 52%, frameshift and nonsense
mutations account for 13% and 11%, respectively, inframe
indels for about 6%, and deletion of thewhole gene for accounts
for about 11%. These alterations can be found throughout the
coding sequence [48, 49]. Sporadic RCC and CNS have been
reported to exhibit somatic mutations in the VHL gene [50]

while in other sporadic cancers, such as breast, colon, lung,
prostate, and thyroid, they are very rare [51, 52].

VHL protein function and its role in tumor suppression
The VHL protein forms a part of a multiprotein complex. This
complex has E3 ubiquitin ligase activity that results in polyu-
biquitination and proteosomal degradation of particular target
proteins. Othermembers of this complex are elongin B, elongin
C, cullin-2 (CUL2), andRING-box1 (RBX1). Themain role ofVHL
in the complex is recognition of the specific protein targets,
which are thenmarked for degradation [53–55]. One particular
protein target of VHL, the hypoxia-inducible factor-a (HIF-α),
has been the focus ofmany studies. HIF-α is a transcription fac-
tor which plays a pivotal role in the regulation of gene expres-
sion by oxygen [55–59] (Figure 2).

HIF-α is recognized and marked for degradation under nor-
moxia conditions. In cells exposed to lowoxygen levels orwhich
lack functional VHL, HIF-α subunits accumulate and complex
with the HIF-β subunit, forming heterodimers. Formation of
this heterodimer results in the activation of a number of genes
leading to the production of proteins involved in cell adaptation
to hypoxia and regulation of angiogenesis [55, 59, 60].

Accumulating evidence suggests that the function of VHL
is broader than its established role in oxygen signal trans-
duction. Moreover, the loss of VHL function may affect
the regulation of other signaling pathways with important
roles in biological processes, such as cell survival, invasion,
proliferation, and metastasis [19, 20, 61]. It was found that
the VHL protein interacts with a variety of other proteins
in the cell, leading to their degradation or inhibition. For
example, subsequent to VHL protein interaction, the HIF
deubiquitinating enzymes VDU1/2 [62, 63] and Rpb1 subunit
of RNA polymerase II are marked for degradation [64]. Studies
show that VHL can also inhibit activity in several members
of the protein kinase C family [65–67] and the activity of
the Sp1 transcription factor [68, 69]. Furthermore, VHL was
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Figure 2. Regulation of the HIF-α by E3 ubiquitin ligase complex in normoxic and hypoxic conditions. Adapted from “HIF Signaling,” by BioRender.com
(2021). Retrieved from https://app.biorender.com/biorender-templates.

demonstrated to interact with the ubiquitously expressed Hu
familyRNA-bindingproteinHuR [70] that plays a part inmRNA
stabilization and, with fibronectin, contributing to the proper
assembly of the extracellular matrix [71, 72]. VHL was also
found to interact with microtubules and protect them from
depolymerization [73]. According to some studies, VHL acts as a
positive regulator of the tumor suppressor TP53 (tumor protein
p53) by inhibiting its Mdm2-mediated ubiquitination, and by
subsequent recruitment of p53-modifying enzymes [74, 75]. On
the other hand, there is evidence that VHL negatively regulates
p53 activity by controlling the formation of p53 tetramers
and reducing the binding of p53 at the promoters of the
target genes [76]. A number of other VHL substrates/binding
partners and associated signaling pathways have recently been
identified, as extensively reviewed elsewhere [61].

There is mounting evidence that VHL performs a wide
variety of HIF-α-dependent as well as HIF-α-independent
functions affecting thus different cellular processes, some of
which have a crucial role in tumorigenesis [50, 77]. It is still
unclear, however, to which extent these HIF-α-dependent and
HIF-α-independent functions cooperate during the process of
tumorigenesis. A summary of the VHL protein functions and
their associations with various processes implicated in tumor
pathology is given in Tables 1A and 1B.

VHL expression in PTC
VHL has been shown to be aberrantly expressed in a number
of human cancers. These include kidney, colon, breast, gas-
tric cancer, and MEN2-associated medullary thyroid cancer
[51, 78, 79]. A few studies have investigated the potential
involvement of VHL in PTC development and/or progression.

The VHL protein is highly expressed in normal thyroid
follicular tissueand isdifferentially expressed innon-neoplastic
and neoplastic thyroid lesions in proportion to the level of
tumor differentiation [80–82]. This led to our hypothesis that
VHLmaybe involved in the development of PTC. Consequently,
we conducted a study evaluating mutation and methylation
status as well as levels of expression of the VHL gene in tumour
samples from 264 patients presenting with PTC. We found
no somatic mutations or evidence of VHL downregulation
via promoter hypermethylation. However, we found strong
evidence of deregulated VHL expression at the mRNA level.
Moreover, low VHL mRNA levels showed a strong correlation
with patients’ older age, advanced clinical stage of the disease,
classical PTC histovariant, and tumor multifocality. We also
detected amarginal influence of lowVHL expression ondisease-
free interval [83]. Our study was the first to demonstrate
the association between VHL levels and clinico-pathological
parameters in PTC, providing evidence of the involvement of
VHL tumor suppressor in PTC pathology.

Later, in a similar study, Baldini et al. measured the expres-
sion levels of the two VHL mRNA splicing variants, VHL-213
(V1) and VHL-172 (V2), in a series of 96 PTC and corresponding
normal thyroid tissues. They reported that expression of VHL
was deregulated in most of the PTC tissues analyzed, and that
the percent of sampleswith downregulated expression levels of
both splicing variants was slightly higher than the percent of
sampleswith upregulated V1 andV2 expression levels [84]. The
mechanisms responsible for VHL gene expression regulation
were not investigated in this study. In our second study on VHL
in PTC [85],we compared the expression levels ofVHLmRNA in
another tumor series consisting of 42 pairs of PTCs andmatched
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Table 1A. HIF-α-dependent functions of VHL protein and their association with cellular processes involved in tumor development and progression.
The table is based on data from [50, 55, 61, 118–120]

Process HIF-α-dependent functions

Cell proliferation and survival Regulation of TGFα and EGFR

Apoptosis HIF modulation of p53and NF-κB activity, and suppression of BNIP3

Cell cycle progression Regulation of cyclin D1

Angiogenesis Regulation of VEGF, PDGF among others

Glucose uptake and metabolism Regulation of GLUT1, GLUT3, HK2, PGK1, LDHA, PFK, and PDH, among others

Microtubule stabilization and maintenance of the primary cilium Primary cilia modulation

Chemotaxis Regulation of SDF1 and CXCR4

Assembly and regulation of the extracellular matrix Regulation of E-cadherin and MMPs

Homeostasis Regulation of external pH through CAIX

HIF: Hypoxia-inducible factor; TGFα: Transforming growth factor-α; EGFR: Epidermal growth factor receptor; NF-κB: Nuclear factor-κB; BNIP3:
BCL2/adenovirus E1B-interacting protein 3; VEGF: Vascular endothelial growth factor; PDGF: Platelet-derived growth factor; GLUT: Glucose transporter;
HK2: Hexokinase 2, PGK1: Phosphoglyceratekinase 1; LDHA: Lactate dehydrogenase A; PFK: Phosphofructokinase; PDH: Pyruvate dehydrogenase; SDF1:
Stromal-cell derived factor 1 (encoded by CXCL12); CXCR4: CXC-chemokine receptor 4; MMPs: Matrix metalloproteinases; CAIX: Carbonic anhydrase IX.

Table 1B. HIF-α-independent functions of VHL protein and their association with cellular processes involved in tumor development and
progression. The table is based on data from [50, 55, 61, 118–120]

Process HIF-α-independent functions

Cell proliferation and survival Regulation of NDRG3, which accumulates by binding to lactate under hypoxia and further interacts with
c-Raf for the activation of the Raf-ERK pathway. Regulation of AKT–VHL binds to hydroxylated AKT
induced by EglN1 and inhibits its phosphorylation and kinase activity.

Apoptosis Activation of p53 transcriptional activity, modulation of NF-κB activity and downregulation of JUNB
(which is known to blunt neuronal apoptosis during NGF withdrawal).

Cell cycle progression VHL targets B-Myb (MYBL2) for ubiquitination and proteasome degradation

Cell senescence Control of cell senescence through RB and the SWI2/SNF2 chromatin remodeller p400

Transcriptional regulation Involvement in ubiquitylation of the large subunit of RNA polymerase II in response to oxidative stress,
control of influence on HuR, binding to SP1 transcription factor

Microtubule stabilization and maintenance
of the primary cilium

Association and stabilization of microtubules. Ubiquitination of Aurora kinase A (AURKA) independent of
oxygen-dependent PHD activity to regulate formation of the primary cilium in quiescent cells

Assembly and regulation of the
extracellular matrix

Regulation of fibronectin, collagen IV, adherens, tight junction, integrins and MMPs

Homeostasis Control of cell senescence through RB and the SWI2/SNF2chromatin remodeller p400

Inflammation VHL functions as an adaptor that promotes the inhibitory phosphorylation of the NF-κB agonist, Card9,
by enhancing the interaction between Card9 and CK2

Cell growth and proliferation Interacts with RAPTOR and increases RAPTOR degradation by ubiquitination, thereby inhibiting
mTORC1 signaling

Cell growth, apoptosis, cell differentiation,
stem-cell self-renewal

Negative regulation of c-Myc transcription

Anthracycline cytotoxicity regulation Transcritional regulation of ALDH2 through interaction with its transcription factor HNF-4α

NDRG3: N-Myc downstream-regulated gene 3; NF-κB: Nuclear factor-κB; HIF: Hypoxia-inducible factor; HuR: Human antigen R (also known as ELAV1);
NGF: Nerve growth factor; RB: Retinoblastoma protein; CARD9: Caspase Recruitment Domain FamilyMember 9; CK2: Casein kinase II; RAPTOR: Regulatory-
associated protein of the mechanistic target of rapamycin complex 1 (mTORC1); ALDH2: Aldehyde dehydrogenase 2; HNF-4α: Hepatocyte nuclear factor 4
alpha.

non-tumor thyroid tissues. The results showed that compared
to corresponding non-tumor thyroid tissues, the levels of VHL
in tumor tissues were either up- or downregulated, which was
in linewith the results of Baldini et al. [84], despite the opposite

trend in the percent of the decreased and increased cases in
these two studies. We also evaluated the association between
VHL expression levels and clinico-pathological parameters in
this patient cohort. Our data showed that lowerVHL levelswere
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significantly associated with extrathyroid spread and capsular
invasion and there was a trend toward association with the
presence of lymph node metastases, which led to the overall
conclusion, consistent with our first study of VHL in PTC, that
VHL downregulationmight be associated withmore aggressive
tumor features, at least in some PTC cases.

Later on, two other studies addressed the status of VHL in
PTC. Zang et al. [86], who evaluated the VHL expression in PTC
and corresponding normal thyroid tissues in a group of 52 PTC
patients, reported that VHL levels were significantly decreased
in PTC. Deregulated VHL gene expression was also found in a
recent study conducted on 20 primary tumor and metastatic
PTC tissue. Interestingly, lower VHL mRNA levels were found
in primary tumors compared to metastatic tissues. In primary
tumors, BRAFV600E positive status was associated with higher
levels of VHL, while in metastatic tissue, it was associated with
lower VHL levels [87].

Summarized results produced from other gene profiling
studies showed differences in the expression of over 200 other
genes shared between PTC and normal thyroid tissues. The
upregulated expression of LGALS3, SERPINA1, MET, KRT19,
FN1, and TIMP1 was found within the existing data, as well as
downregulated expression of TPO, SLC26A4, DIO1/2, and TFF3

in the well differentiated thyroid carcinomas but there was no
evidence of deregulated expression of VHL [42]. This could be
attributed to the small sample size of most of the studies or
the cut-off values for differential expression being set too high.
On the other hand, VHL has been reported to be included in
a robust predictive signature for patients with breast cancer.
Based on RNA-seq data from The Cancer Genome Atlas and
several Gene Expression Omnibus datasets, a 14-gene hypoxia-
related signature, which included VHL, was developed and the
findings revealed that this signature could serve as a potential
prognostic biomarker for breast cancer [88].

VHL expression in other types of cancer
Looking at existing data on the expression of VHL and its cor-
relationwith clinicopathological features in other cancer types,
Zia et al. [89] reported that in highly aggressive breast cancer
cell lines, VHL was either not expressed or was expressed at
a low level, affecting cell motility and invasiveness. Zia et al.
also found that, in higher grade breast cancer tumors, VHLwas
expressed at a much lower level compared to its expression
in lower grade breast cancer tumors. The downregulated
expression of VHL was also seen in tumors from patients
with nodal and distant metastasis [89]. A study on ovarian
cancer cells also showed that the loss of VHL increased cell
aggressiveness [90]. Reduced pVHL expression has also been
shown to be correlated with decreased apoptosis and a higher
grade of chondrosarcoma [91]. Hoebeeck et al. [92] report that
neuroblastoma patients also show a strong correlation between
reduced levels of VHL and a poorer outcome in terms of
patients’ survival. Similarly, in clear cell renal cell carci-
noma, the increase in tumor aggressiveness was found to
correlate with reduced expression of VHL identifying VHL
downregulation as a risk factor for worse patient overall
survival [93]. According to a study of Li et al. [94], although

no correlations were observed with patient age, sex, tumor
size, lymph node metastasis, or distant metastasis, negative
VHL expression associated with a worse prognosis in patients
with hepatocellular carcinoma. In a recent study on bladder
cancer, differential under-expression of VHL—both mRNA
and protein—was found in muscle-invasive bladder cancer in
comparison to non-muscle-invasive bladder cancer [95].

Major mechanisms of VHL gene inactivation in cancer
Inactivationof theVHL gene can result fromvarious alterations,
such as intragenic mutations, mitotic recombination events,
and promoter hypermethylation. VHL gene mutations were
found in tumors associated with VHL syndrome as well in
some sporadic tumors, such as clear-cell renal carcinomas,
hemangioblastomas, and sporadic pheochromocytomaarise
harbor VHL gene mutations [96–98]. Somatic VHL mutations
on the other hand are rare in histological tumor types not
present in VHL disease [51]. The results of our study, which
found no evidence for mutations or homozygous deletions of
the VHL are consistent with these reports [83]. However, loss
of heterozygosity at chromosome 3p, including the VHL gene
locus (3p25), was reported in one study [99] where it was found
in 29% of PTCs.

The other common mechanism of gene inactivation is the
hypermethylation of the promoter region. The VHL gene has
been found to be silenced by methylation in 20%–30% of
individuals with renal cell carcinoma, acute myeloid leukemia,
or multiple myeloma [100–102] while in plasma cell neoplasia
methylation of the VHL promoter is a common event [103].
In a recent study on bladder cancer, promoter methylation of
the VHL gene was detected in almost 43% of bladder cancer
samples,with highmethylation beingmore frequent inmuscle-
invasive bladder cancer than in non-muscle-invasive bladder
cancer [95].Methylation of the VHL promoterwas also detected
in different stages of cervical carcinoma [104]. Several groups
have reported the presence of epigenetic modifications in thy-
roid. Promoter hypermethylationwas detected in the following
tumor suppressors: CDH1, p16INK4A, RASSF1A, SLC5A8, TIMP3,
DAPK,MGMT,DNMT1,MLH1, andRARB among others [105–110].
The methylation status of VHL in PTC patients has so far been
addressed by only a couple of studies. Migdalska-Sk et al. [111]
analyzed the methylation levels of eight tumor suppressor
genes, including VHL, in PTC and control, non-cancerous
thyroid tissues.According to this study, thehighestmethylation
rate—100%, was found in ARHI, CDH1, p16INK4A, and RASSF1A
but the frequency of promoter methylation of the VHL gene
was the lowest, both in PTC and noncancerous tissues [111].
Similarly, the analysis of our PTC sample series with reduced
VHL levels did not find evidence for VHL gene silencing through
methylation.However, since our analysis covered only one part
of the VHL promoter we could eliminate the possibility of the
presence of methylation in the promoter regions that were not
analyzed in our studies [83].

Small non-coding RNAs (microRNAs, miRNAs) have a
significant role in gene expression downregulation [112]. This
is a class of ∼22 nucleotides long non-coding RNAs involved
in the posttranscriptional regulation of gene expression. They
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Table 2. MicroRNAs experimentally confirmed to regulate VHL
expression in different types of cancer cells

microRNA Type of cancer cells Reference

miR-17-5p Renal cell carcinoma cells [121]

miR-21 Hepatic stellate cells; papillary thyroid
carcinoma; pancreatic carcinoma;
cervical carcinoma cells

[86, 122–124]

miR-23b Glioma cells [125]

miR-92 Epithelial ovarian carcinoma; clear cell
renal cell carcinoma

[116, 117]

miR-101 Breast carcinoma cells [126]

miR-150 Glioma cells [127]

miR-155 Breast carcinoma cells [78]

miR-222 Retinoblastoma cells [128]

miR-224 Renal cell carcinoma cells [121]

miR-331-3p Hepatocellular carcinoma cells [129]

miR-429 HER2+ breast carcinoma cells [130]

miR-566 Glioblastoma cells [131]

miR-887 Hepatocellular carcinoma cells [132]

typically bind to the 3 untranslated regions (UTRs) of target
gene mRNAs, which leads to degradation or to translation
inhibition of the target mRNA, resulting in expression down-
regulation of their protein products [113]. Since their discovery,
a plethora of studies have demonstrated the importance of
miRNAs in cancer biology, with their activity being shown
to affect a number of crucial processes in tumorigenesis,
such as tumor growth, invasion, angiogenesis, and immune
evasion. Depending on their targets, miRNAs can function as
oncogenes or tumor suppressors [114]. A number of miRNAs
were reported to target VHL directly, downregulating its
expression in different cancers, as summarised in Table 2.

So far, few studies have addressed the regulation of VHL by
miRNAs inPTC. Zang et al. [86] showed thatVHL canbe apoten-
tial target ofmiR-21 in PTC cells.MiR-21 is an oncomiR involved
in the tumorogenisis of a number of different cancers [115]
and, according to several reports, as summarized in Table 2,
it can directly target VHL in different cancers. In one of our
studies, we measured the expression levels of VHL and another
well documented oncomiR—miR-92a-3p—and explored the
correlation between them in PTC and nontumor thyroid tissue.
We found that both VHL and miR-92a were deregulated in
PTC but a negative correlation between them existed only in
a subgroup of PTCs with vascular invasion. Based on these
results,wecan speculate thatVHL,at least at somepointsduring
tumor progression, might be regulated by miR-92a-3p in PTC
as well, since the possibility of their direct interaction was
demonstrated in renal cell carcinoma and epithelial ovarian
carcinoma cells [116, 117]. However, more research needs to
be done in order to discover the complex interaction network
between VHL and functionally related miRNAs in different
stages of PTC development and progression, as well as to

clarify their roles in disease progression and their prognostic
utility.

Conclusion
The VHL tumor suppressor has been implicated in the devel-
opment of a dominantly inherited cancer syndrome known as
VHL disease, as well as a number of sporadic cancers. By reg-
ulation of the availability of HIF-α in the cell, the VHL has
important effects on the tumorigenesis of the cell. VHL protein
negatively controls angiogenesis, a critical factor in theprogres-
sion of cancer. Accumulating evidence strongly indicates that
VHL is also involved both through HIF-α-dependent as well as
HIF-α-independent actions in several other processes, such as
cell proliferation and survival, cell cycle progression, apoptosis,
extracellular matrix regulation, inflammation, etc. Moreover,
the latest evidence suggests that aside from a tumor suppressor
function, VHL may also demonstrate pro-tumor function in
some circumstances. In this context, VHL has definitively been
shown to be a strong potential candidate as a biomarker and/or
a therapeutic target in cancer. However, more research needs
to be done since the complexity of its role in the cell, both in
normal and pathological conditions, has only recently started to
be revealed. So far, just a few studies have investigated VHL in
papillary thyroid cancer, and all reported it to be deregulated.
The significance of this deregulation, as well as its potential
as a diagnostic/prognostic biomarker has yet to be clarified.
In this review, we summarized the existing knowledge about
the implication of VHL in PTC pathogenesis with the aim to
bring attention to it and emphasize its potential utility as an
expression biomarker for the stratification of PTC patients into
high and low risk groups for recurrent disease.
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