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Machine learning to improve prognosis prediction of
metastatic clear-cell renal cell carcinoma treated with
cytoreductive nephrectomy and systemic therapy

Wenjie Yang ®*, Lin Ma®#, Jie Dong ®, Mengchao Wei®, Ruoyu Ji®, Hualin Chen®, Xiaogiang Xue ®, Yingjie Li®, Zhaoheng Jin®,
Weifeng Xu®*, and Zhigang Ji®*

Cytoreductive nephrectomy (CN) combined with systemic therapy is commonly used to treat metastatic clear-cell renal cell carcinoma
(mccRCC). However, prognostic models for these patients are limited. In the present study, the clinical data of 782 mccRCC patients
who received both CN and systemic therapy were obtained from the Surveillance, Epidemiology, and End Results (SEER) database
(2010-2016), and patients were divided into training and internal test cohorts. A total of 144 patients who met the same criteria from
our center (Peking Union Medical College Hospital) were placed in the external test cohort. The cancer-specific survival rate (CSS) at 1,
3,and 5 years was set as the research outcome. Then, four ML models, i.e., a gradient boosting machine (GBM), support vector machine
(SVM), random forest (RF), and logistic regression (LR), were established. Fifteen potential independent features were included in this
study. Model performance was evaluated using the area under the receiver operating characteristic curves (AUC), calibration plots, and
decision curve analysis (DCA). Seven clinical features, namely, pathological grade, T stage, N stage, number of metastatic sites, brain or
liver metastases, and metastasectomy, were selected for subsequent analysis via the recursive feature elimination (RFE) algorithm. In
conclusion, the GBM model performed best at 1-, 3- and 5-year CSS prediction (0.836, 0.819, and 0.808, respectively, in the internal test
cohort and 0.819, 0.805, and 0.786, respectively, in the external cohort). Furthermore, we divided the patients into three strata (high-,

intermediate-, and low-risk) via X-tile analysis and concluded that clinically individualized treatment can be aided by these practical

prognostic models.

Keywords: Metastatic clear-cell renal cell carcinoma (mccRCC), cytoreductive nephrectomy (CN), systemic therapy, machine
learning (ML), prognosis prediction model, Surveillance, Epidemiology, and End Results (SEER) database.

Introduction

Renal cell carcinoma (RCC) is one of the most common geni-
tourinary cancers, with an increasing incidence and morbid-
ity rate worldwide. Clear-cell RCC (ccRCC) remains the most
prevalent histological subtype of renal cancer (accounting for
80%-85%). Although an ever-growing number of renal cancer
patients can be detected at an early stage, 25%-30% of patients
have metastasized at the time of diagnosis, and over 20% of
patients will develop metastases after curative surgery, which
contributes to a poor prognosis in patients [1-3].

Standard treatment strategies for metastatic ccRCC (mccRCC)
have progressed substantially over the past decades. The
majority of studies have shown that cytoreductive nephrectomy
(CN), also termed radical nephrectomy for primary lesions, pro-
vides a significant survival benefit for patients with mccRCC.
Theoretically, removing the primary lesion can effectively
reduce the tumor burden and create favorable conditions for
subsequent systemic therapy [4-7]. In an era where cytokine

therapy has been the only systemic therapy option for patients
with mccRCC, a combined treatment regimen of CN and
interferon-based adjunctive therapy has shown to be more
effective than interferon therapy alone [8, 9]. In the targeted
therapy age, several rigorous randomized clinical trials have
also demonstrated the promising effectiveness of CN combined
with systemic therapy in patients with mecRCC. Owing to the
spectacular advantages in relieving local symptoms, such as
chronic pain and hematuria, a substantial number of mccRCC
patients have received both CN and systemic therapy in the real
world [10, 11].

Building a prognostic prediction model is an effective
method for identifying the patients who will benefit the most
from these treatments. However, a model for predicting the
survival of mccRCC patients treated with CN and systemic
therapy is still lacking.

As an important subfield of artificial intelligence, machine
learning (ML) algorithms involve multiple disciplines and
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demonstrate advancement compared with traditional tools.
Mounting evidence has revealed that ML models can provide
a more accurate prognosis prediction by comprehensively
integrating and analyzing the complex connections between
clinical features and outcomes [12-14]. For example, one of the
most prevalent ML algorithms, the gradient boosting machine
(GBM), has shown excellent performance in terms of speed
and accuracy in both classification and regression models [15].
Nevertheless, the benefit of an ML model in predicting the
prognosis of patients with mccRCC receiving both CN and
systemic therapy has yet to be fully explored.

In this study, we developed several clinical ML models to
predict cancer-specific survival (CSS) for patients in this cohort
according to data available from the Surveillance, Epidemiology
and End Results (SEER) database. Although the specific drug
regimens were not available in the SEER database, considering
the widespread use of targeted drugs since 2005, systemic ther-
apy in this study mainly refers to angiogenesis therapies and
mammalian rapamycin (mTOR) therapies [16]. Furthermore,
we used an external test cohort from the Peking Union Medical
College Hospital (PUMCH) to test the validity of the models we
developed.

Materials and methods

Study population

Data concerning mccRCC patients treated with CN combined
with systemic therapy were retrospectively extracted from two
sources: (I) the SEER database between 2010 and 2016 (https://
seer.cancer.gov/) and (II) the PUMCH medical records between
2008 and 2018. The inclusion criteria were as follows: (I) age
>18 years; (II) confirmation of ccRCC by histology; (III) distant
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metastases based on the 8th American Joint Committee on
Cancer staging systems; (IV) CN treatment; and (V) a history
of receiving systemic therapy.

The exclusion criteria were as follows: (I) incomplete infor-
mation, including unknown age, sex, race, laterality, patholog-
ical grade, T stage, N stage, tumor size, metastatic organ sites
(bone, brain, liver, and lung), number of metastatic sites, metas-
tasectomy, or radiotherapy; (II) diagnosis of malignant tumors
other than ccRCC. The study population selection process is
illustrated in Figure 1.

Research involving human participants was reviewed and
approved by Peking Union Medical College’s Ethical Committee
and Institutional Review Board. All patients have signed an
informed consent declaration.

Outcome and data collection

Considering the relatively high mortality rates of mccRCC
patients, we selected CSS as the primary endpoint in this study
to avoid discrepancies in deaths. CSS is the interval between
the date of treatment and the date of death caused by the tumor.
Deaths caused by any factors unrelated to cancer or inter-
vention were identified as non-cancer-specific and censored
at the date of death. Patients in the external test (PUMCH)
cohort underwent regular physical examinations, laboratory
tests, urological ultrasound scans, bone scintigraphy, enhanced
computerized tomography (CT) or magnetic resonance imaging
every six months. The follow-up was terminated on April 30,
2021.

ML model establishment and performance evaluation
We employed a recursive feature elimination (RFE) algorithm
to select important features for model building. In short,
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RFE starts with a model that covers all features and grad-
ually removes the features that have the least impact on
model performance until the retained features exceed a set
performance threshold. The feature subset with the highest
accuracy is then selected as the optimal feature combination.
To determine the optimal hyperparameters, all the models were
trained using 10-fold cross-validation in the training cohort.
The data were split into ten parts: one part was assigned to
the validation cohort and the other nine parts were used for
training. The cross-validation process was repeated ten times,
with each part validated once, and the average accuracy of
the ten validations gave the final accuracy. Then, four ML
algorithms, i.e., the GBM, support vector machine (SVM),
random forest (RF), and logistic regression (LR) algorithms,
were employed to construct ML models. Receiver operating
characteristic (ROC) curves were employed to estimate the
ML model accuracy by calculating the area under the curve
(AUC). The ROC curve is calculated for all possible cut points
(thresholds) and shows the correlation between sensitivity and
specificity, thus providing a dynamic and objective response to
the model’s performance. Higher AUC values indicated better
accuracy of the predictive model. The model fit was evaluated
using calibration plots. The decision curve analysis (DCA)
method was used to visualize the net benefits and usefulness
of the prediction models.

Statistical analysis

To estimate the differences between groups, categorical vari-
ables were expressed as numbers and percentages, and compar-
isons were made using Chi-square tests or Fisher’s exact tests.
The patients were divided into three risk groups: low, interme-
diate, and high, using the X-tile software (version 3.6.1). All sta-
tistical analyses in this study were performed using R software.
Statistical significance was defined as P < 0.05.

Results

Baseline characteristics

This study examined clinical data from 782 patients with
mccRCC treated with CN combined with systemic therapy
from the SEER database. Overall, 70% (n = 550) of the patients
were randomly divided into the training cohorts, while the
remaining 30% (n = 232) were assigned to the internal test
cohort. The median follow-up was 25 (17-31) months in the
SEER database. A total of 144 patients were included in the
external test (PUMCH) cohort, and the median follow-up for
this cohort was 37 (24-52) months. In the SEER cohort, 567
patients (72.5%) had single organ metastases (lung, bone, brain,
orliver), 184 (23.5%) had double organ metastases, and 31 (4.0%)
had three or more organ metastases. In the PUMCH cohort,
110 patients (76.4%) had single organ metastases, 30 (20.8%)
had double organ metastases, and 4 (2.8%) had three or more
organ metastases. The lungs were the most common site of
metastases at a total of 589 SEER cases (75.3%) and 119 PUMCH
cases (82.6%). This was followed by 283 SEER (36.2%) and 43
PUMCH cases (29.9%) of bone metastases, 83 SEER (10.6%) and
13 PUMCH (9.0%) cases of liver metastases, and 74 SEER (9.5%)
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and 8 PUMCH (5.5%) cases of brain metastases. In addition,
154 SEER (19.7%) and 35 PUMCH (24.3%) patients underwent
metastasectomy. Other characteristics of the clinical population
and demographics are summarized in Table 1.

Feature selection

Incorporating redundant features may degrade the perfor-
mance of an ML model [17]. The RFE algorithm was employed
as a feature selection method to identify the optimal feature
subset among all features. After RFE screening, seven important
features, namely, pathological grade, T stage, N stage, the
number of metastatic sites, brain or liver metastases, and
metastasectomy, were determined. These features were then
included in all our ML models in both the training and testing
cohorts (Figure S1).

ML models accurately predicted patient prognosis

We established prognosis prediction models for mccRCC
patients treated with CN and systemic therapy using four
ML algorithms (GBM, SVM, RF, and LR). To evaluate the
discriminatory abilities of these models, ROC curves for 1-, 3-,
and 5-year CSS were constructed. In the training cohort, the
AUC values of these ML models for the prediction of 1-, 3-, and
5-year CSS were 0.878, 0.832, and 0.828 for GBM; 0.860, 0.803,
and 0.816 for SVM; 0.854, 0.810, and 0.806 for RF; and 0.848,
0.792, and 0.796 for LR, respectively. Compared with the other
three ML models, the GBM model had the highest accuracy in
predicting 1-, 3-, and 5-year CSS. Similar results were found
in the internal and external test cohorts (Figure 2A-2C). In
the internal test cohort, the AUC values of the GBM model for
the prediction of 1-, 3-, and 5-year CSS were 0.836, 0.819, and
0.808, respectively (Figure 2D-2F). In the external test cohort,
the AUC values of the GBM model for the prediction of 1-,
3-, and 5-year CSS were 0.819, 0.805, and 0.786, respectively
(Figure 2G-21). In addition, calibration curves for the four ML
models are demonstrated in Figure 3. Compared to the other
three ML models, the calibration curves of the GBM model were
the closest to the ideal lines.

Clinical value of the ML models

DCA is a novel method for visualizing whether the use of a pre-
diction model in clinical practice will benefit decision-making.
The percentage of threshold probability is displayed on the
X-axis, and the net benefit is indicated on the Y-axis [18, 19].
In our study, we hypothesized that patients whose predicted
probability exceeds a set threshold would benefit from CN
combined with systemic therapy. DCA indicated that all ML
models achieved a net benefit. The DCA of the GBM has higher
net benefits in the majority of the cohort subgroups, indicating
that it had better clinical outcome values (Figure 4). Finally, the
varying importance of the features for predicting CSS in each
ML model is shown in Figure S2.

Risk stratification

As GBM was the optimal ML model based on the performance
evaluation above, we set two optimal cut-off values (—5.4 and
—4.8) depending on the GBM prediction score and divided
patients into high-, intermediate-, and low-risk groups via

www.biomolbiomed.com


http://www.biomolbiomed.com
http://www.biomolbiomed.com

Biomolecules
& Biomedicine

Table 1. Demographics and clinicopathologic features of the training, internal, and external validation

Training cohort

Internal validation External validation (PUMCH)

Characteristic (n =550) cohort (n = 232) cohort (n = 144) Pvalue
Age (years) <65 362 (65.8%) 160 (69.0%) 86 (59.7%) 0.184
>65 188 (34.2%) 72 (31.0%) 58 (40.3%)

Sex Male 397 (72.2%) 158 (68.1%) 105 (72.9%) 0.461
Female 153 (27.8%) 74 (31.9%) 39 (27.1%)

Race White 481(87.5%) 196 (84.5%) - <0.001
Black 27 (4.9%) 14 (6.0%) -
Other 42 (7.6%) 22 (9.5%) 144 (100%)

Laterality Left 292 (53.1%) 110 (47.4%) 80 (55.6%) 0.229
Right 258 (46.9%) 122 (52.6%) 64 (44.4%)

T stage T1 47 (8.5%) 25 (10.8%) 9(6.2%) 0.255
T2 80 (14.5) 22(9.5) 15(10.4)
T3 370 (67.3) 158 (68.1) 107 (74.3)
T4 53 (9.6%) 27 (11.6%) 13(9.0%)

Tumor size (cm) <4 22 (4.0%) 6(2.6%) 1(0.7%) 0.404
4~7 108 (19.6%) 52 (22.4%) 33(22.9%)
7~10 188 (34.2%) 85 (36.6%) 49 (34.0%)
>10 232 (42.2%) 89 (38.4%) 61(42.4%)

N stage NO 395 (71.8%) 185 (79.7%) 107 (74.3%) 0.069
N1 155 (28.2%) 47(20.3%) 37 (25.7%)

Mets.Lung No 126 (22.9%) 67 (28.9%) 25 (17.4%) 0.033
Yes 424 (77.1%) 165 (71.1%) 119 (82.6%)

Mets.Bone No 365 (66.4%) 134 (57.8%) 101(70.1%) 0.024
Yes 185 (33.6%) 98 (42.2%) 43(29.9%)

Mets.Liver No 500 (90.9%) 199 (85.8%) 131(91.0%) 0.084
Yes 50 (9.1%) 33 (14.2%) 13(9.0%)

Mets.Brain No 495 (90.0%) 213 (91.8%) 134 (94.5%) 0.242
Yes 55 (10.0%) 19 (8.2%) 8 (5.5%)

Metastatic surgery Not Performed 445 (80.9%) 183 (78.9%) 109 (75.7%) 0.803
Performed 105 (19.1%) 49 (21.1%) 35 (24.3%)

Multiple organ metastasis Single 407 (74.0%) 160 (69.0%) 110 (76.4%) 0.653
Two 123 (22.4%) 61(26.3%) 30 (20.8%)
Three-Four 20 (3.6%) 11 (4.7%) 4(2.8%)

Histological grade I-11 91(16.5%) 38 (16.4%) 24 (16.7%) 0.997
n-1v 459 (83.5%) 194 (83.6%) 120 (83.3%)

Radiotherapy No 376 (68.4%) 150 (64.7%) 105 (72.9%) 0.244
Yes 174 (31.6%) 82(35.3%) 39 (27.1%)

PUMCH: Peking Union Medical College Hospital; Mets: Metastasis organ site.

X-tile analysis (Figure S3). In the training cohort, the long-term
survival (5-year CSS) of each group was as follows: high-risk,
2.3%; intermediate-risk, 18.7%; and low-risk, 23.7%. We then
verified the actual performance of the aforementioned three
risk strata in the internal and external test cohorts. In the
internal test cohort, the 5-year CSS was 4.0% in the high-risk
group, 15.1% in the intermediate-risk group, and 26.2% in the
low-risk group. In the PUMCH cohort, the 5-year CSS was
5.9% in the high-risk group, 21.2% in the intermediate-risk
group, and 22.8% in the low-risk group (Table 2). According
to these results, the ML model provided excellent prognostic
stratification in the training, internal test, and external test
cohorts. The survival curves of patients with different risk
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stratifications also showed that the GBM model provided
excellent prognostic stratification (Figure 5A-5C).

Discussion

At present, positive associations between cytoreductive resec-
tion of primary tumors and superior overall survival rates have
been demonstrated in a variety of solid metastatic tumors, such
as advanced-stage endometrial cancer, cohesive gastric can-
cer, and ovarian cancer [20-22]. As for mccRCC, a significant
survival benefit associated with CN and systemic therapy was
found in a study by Chakiryan et al., who constructed an analy-
sis containing 5005 mccRCC patients using the National Cancer
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Figure 2. Receiver operating characteristic (ROC) curves of four ML models (GBM, SVM, RF, and LR). (A)-(C) AUC values of predictive models at 1-,

3-, and 5-year CSS in the training cohorts, respectively; (D)-(F) AUC values of predictive models at 1-, 3-, and 5-year CSS in the internal validation cohorts,
respectively; (G)-(I) AUC values of predictive models at 1-, 3-, and 5-year CSS in the external validation cohorts, respectively. ML: Machine learning; GBM:
Gradient boosting machine; SVM: Support vector machine; RF: Random forest; LR: Logistic regression; AUC: Area under the receiver operating characteristic

curves.

Database registry data as the instrumental variable. Similar
results were also reported by Zhang et al. and McIntosh et al.
based on clinical data from the SEER database [23-25].
However, given the potential surgical complications and
toxic effects of systemic therapy, a corresponding prognosis
prediction model needs to be developed to improve patient
selection and outcome prediction. Several prognostic predic-
tion models have been used for mccRCC patients, such as
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the International Metastatic Renal Cell Carcinoma Database
Consortium model and the Memorial Sloan-Kettering Cancer
Center model. However, models that specialize in predicting
the prognosis of mccRCC patients receiving both CN and
systemic therapy, especially ML models, have yet to be
developed [26, 27].

Therefore, we aimed to develop a practical survival predic-
tion model to accurately predict the individualized survival
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Figure 3. Calibration curves for predicting CSS of patients with four ML models (GBM, SVM, RF, and LR) at 1, 3, and 5 years, respectively.
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cohorts; (G)-(I) The calibration curves of predictive models in the external validation cohorts. CSS: Cancer-specific survival rate; ML: Machine learning;
GBM: Gradient boosting machine; SVM: Support vector machine; RF: Random forest; LR: Logistic regression.

of mccRCC patients using ML algorithms. In this study,
we established four ML models to predict the prognosis of
these patients. Among them, GBM was the best model in
terms of accuracy, fitness, and clinical application. To our
knowledge, this is the first study to apply ML algorithms
to predict mccRCC patient survival in such a large patient
cohort.

One of the most significant advantages of ML models over
traditional predictive models is their ability to analyze feature
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importance and provide optimal feature subsets without
requiring manual processing, resulting in models with high
accuracy and stability. To date, multiple ML models have been
developed and validated for predicting the prognosis of ccRCC
patients based on medical imaging, gene expression data, or
clinical information. For instance, Nazari et al. constructed
a radiomics-based predictor using several ML algorithms to
analyze CT images, which could accurately predict the 5-year
survival of ccRCC patients [28]. However, a specific ML model
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Figure 4. Decision curve analysis demonstrating the clinical benefit of four ML models (GBM, SVM, RF, and LR). (A)-(C) Training cohorts; (D)-(F)
Internal validation cohorts; (G)-(I) External validation cohorts. ML: Machine learning; GBM: Gradient boosting machine; SVM: Support vector machine; RF:
Random forest; LR: Logistic regression.

for predicting the prognosis of patients with mccRCC remains ~GBM model demonstrated the highest level of prediction accu-
undeveloped. racy and more favorable correlations. Furthermore, according

In our study, the clinical data of over 900 mccRCC patients to the DCA results, the GBM model can effectively assess the
treated with CN and systemic therapy were included. We then  advantages and disadvantages of clinical decisions. In clinical
constructed four ML models (GBM, SVM, RF, and LR) for 1-, research, GBM models are gaining increasing traction. We are
3-, and 5-year CSS prediction. Model performance was evalu-  the first to apply the GBM model to mccRCC survival prediction.
ated using ROC curves, calibration plots, and DCA. In the train- Selecting the most effective features from the original
ing, internal validation, and external validation cohorts, the variables to reduce the dimensionality of the datasets is a key
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Table 2. Cancer-specific survival (CSS) according to risk stratification
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1-year CSS, %

3-year CSS, %

5-year CSS, % Hazard ratio %

Risk group (95% ClI) (95% c1) (95% ClI) (95% c1) Pvalue
Training cohorts (n = 550)
Low-risk 80.2 (76.0-84.5) 44.4 (38.7-51.1) 23.7(18.0-31.2) Ref
Intermediate-risk 57.7 (49.1-67.9) 24.9 (16.9-36.7) 18.7 (11.3-31.1) 1.82(1.33-2.48) <0.001*
High-risk 32.4(23.0-45.6) 6.9 (2.6-18.3) 2.3(0.4-15) 2.02 (1.41-2.90) <0.001'
Internal validation cohorts (n = 232)
Low-risk 83.1(77.2-89.5) 48.4(39.6-59.3) 26.2 (17.6-38.9) Ref
Intermediate-risk 53.1(40.0-70.6) 20.0(9.6-42.2) 15.1(6.0-38.3) 2.24(1.33-3.80) <0.001*
High-risk 36.3(23.5-55.9) 8.1(2.4-27.1) 4.0(0.6-25.4) 1.79 (1.08-2.96) <0.001'
External validation cohorts (n = 144)
Low-risk 78.8 (70.8-87.8) 45.8 (34.6-57.9) 22.8(13.2-39.3) Ref
Intermediate-risk 52.4 (38.3-71.7) 25.2 (15.4-46.2) 21.2(10.9-41.2) 1.72(1.02-2.91) <0.001*
High-risk 11.8 (3.2-43.2) 5.9(0.9-39.4) 5.9 (0.9-39.4) 2.14 (1.03-4.41) <0.001'
*P value versus low-risk; TP value versus intermediate-risk.
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Kaplan-Meier showing disparities between groups. (A) CSS stratified by GBM model in the training cohorts; (B) CSS stratified by GBM model in

the internal validation cohorts; (C) CSS stratified by GBM model in the external validation cohorts. CSS: Cancer-specific survival rate; GBM: Gradient boosting

machine.

step in improving the performance of an ML model [17]. Using
RFE methods, seven features, including pathological grade,
T stage, N stage, number of metastatic sites, brain or liver
metastases, and metastasectomy, were selected, and the optimal
feature subset was chosen for further analysis. In the next
step, the relative importance of each input feature was ranked
using ML models. Despite the slight differences in feature
importance ranking, histological grade, tumor stage, lymph
node stage, number of metastatic sites, and metastasectomy
were ranked in the top five in all ML models. These results
revealed that mccRCC patients with lower histological grade,
earlier tumor stage, no indication of lymph node metastases,
fewer metastatic sites, and who received metastasectomy may
have better prognoses after treatment with CN and systemic
therapy.

Previous studies have also indicated that radiotherapy is
significantly associated with better prognosis in patients with
mccRCC [29, 30]. However, in this study, radiotherapy was
not selected by the RFE algorithm for the optimal feature
subset. Further studies on the influence of radiotherapy on
the prognosis of patients with mccRCC treated with CN and
systemic therapy are needed.
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There have been dramatic changes in the treatment of
mccRCC over the past few decades. The role of CN has become
increasingly unclear with the advent of new treatment options.
According to the results of the CARMENA trial and SURTIME
trials, in comparison with the CN, sunitinib alone did not show
any inferiority. However, all of the above studies were deemed
to be underpowered, limited by insufficient study subjects,
slow to accrue and lack of homogeneity in patients selection.
Based on these limitations, it is important to select patients
appropriately and publish prospective studies that contain high
levels of evidence [31].

After the era of cytokine and targeted therapies, mccRCC
treatment has gradually entered the era of immunotherapy.
Nirmish et al. compared the prognosis of mccRCC patients
treated with immune checkpoint inhibitors (ICIs) alone or
CN combined with ICIs. The result showed that CN plus
immunotherapy had a longer OS than immunotherapy alone
based on the NCDB datasets [32]. Thus, despite the uncer-
tainty of eﬂ'lcacy, CN remains an important treatment option,
especially for alleviating hematuria or pain. However, optimal
candidates for CN need to be carefully screened. Recent
perspectives supported that CN could be performed in a patient
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with a kidney that is in place and a disease of favorable or
intermediate risk [33].

In this study, the GBM model identified approximately 15% of
patients with mccRCC in the high-risk group who experienced
an extremely poor 5-year survival rate after receiving CN and
systemic therapy. Conversely, more than half of the mccRCC
patients were classified as low-risk patients. The low-risk sub-
set displayed relatively satisfactory long-term CSS, indicating
that CN combined with systemic therapy is particularly suitable
for this population. With the above risk stratification, overtreat-
ment can be largely avoided.

Present study has several limitations: First, because the
training set data used for building models were from the
SEER database, the treatment regimen and information on
systemic therapy were not available. The latest studies have
reported that deferred CN may be more beneficial for patients
who respond favorably to systemic therapy compared with
upfront CN [6, 34, 35]. Second, the SEER database lacks data
on some vital clinical characteristics, such as basic diseases,
surgical complications, and biochemical indicators, which may
influence the accuracy of the model prediction. Third, there
is inter-group heterogeneity in the external validation cohort
compared with the data from the SEER database, which may be
related to the relatively small amount of data in the external
validation cohort. Therefore, a multi-center study must be
conducted to further validate the model performance.

Despite mentioned limitations, these ML models, built on a
large population database and validated with data from external
groups, provide the first targeted and practical survival pre-
diction tools for patients with mccRCC receiving both CN and
systemic therapy, which have a high potential for use in clinical
practice.

Conclusion

We developed and validated four ML models based on signif-
icant clinicopathological characteristics for predicting CSS in
patients with mccRCC treated with CN and systemic therapy.
These models will not only be used in CSS prediction, patient
risk stratification, and clinical decision making but also encour-
age further research on the use of ML algorithms to improve
personalized prognostic prediction.
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intermediate, and low mortality risk subsets. GBM: Gradient boosting machine.
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