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REVIEW

The role of Rapsyn in neuromuscular junction and
congenital myasthenic syndrome
Xufeng Liao1#, Yingxing Wang1#, Xinsheng Lai 1 ,2, and Shunqi Wang 1 ,2∗

Rapsyn, an intracellular scaffolding protein associated with the postsynaptic membranes in the neuromuscular junction (NMJ), is
critical for nicotinic nerve receptor clustering and maintenance. Therefore, Rapsyn is essential to the NMJ formation and maintenance,
and Rapsyn mutant is one of the reasons causing the pathogenies of the congenital myasthenic syndrome (CMS). In addition, there is
little research on Rapsyn in the central nervous system (CNS). In this review, the role of Rapsyn in the NMJ formation and the mutation
of Rapsyn leading to CMSwill be reviewed separately and sequentially. Finally, the potential function of Rapsyn is prospected.

Keywords: Rapsyn, neuromuscular junction (NMJ), congenital myasthenic syndrome (CMS), mutation, medication, central
nervous system (CNS).

Introduction
Rapsyn, as a receptor associate protein of the synapse, was first
isolated from Torpedo electric organ and was named Torpedo
43K protein for the molecular weight [1]. Rapsyn was found
as a major protein of nicotinic acetylcholine (nAChR) asso-
ciated with the postsynaptic membranes of the neuromuscu-
lar junction (NMJ), being essential for nAChR clustering and
maintaining [2]. In 1994, Rapsyn was early cloned and charac-
terized from a mouse consisting of eight exons and extending
over 12 Kb in the central region of chromosome 2 [3]. Human
Rapsyn cDNAwasfirst cloned in 1996, and the genewasmapped
to the locus of chromosome 11p11.2–p11.1 [4].

Rapsyn is tightly anchored in thepostsynapticmembranevia
anN-terminal myristoylated site (Gly2), followed by seven tan-
dem tetratricopeptide repeats (TPRs), coiled-coil (CC) domain,
and a C-terminal Ring-H2 domain (Figure 1A). Its N-terminal
contains a consensus sequence subject to the covalent attach-
ment of the myristate, and the immobilization in the cyto-
plasmic membrane face maintains a specialized network of
the nAChR clusters in the NMJ of vertebrates [1]. TPRs are
34-amino-acid repeats forming two amphipathic α-helices,
which regulate protein–protein interactions. CC domain is a
large part, including a potential TPR motif. The C-terminal
region is cysteine-rich and conforms to a zinc ring finger motif
belonging to the Ring-H2 domain [5], which was identified to
execute E3 ligase activity [6, 7].

Rapsyn is critical to the NMJ forming and maintaining, and
Rapsynmutant is one of the reasons causing the pathogenies of
the congenitalmyasthenic syndrome (CMS). The role of Rapsyn
in the NMJ formation and CMSwill be reviewed separately and
sequentially in the following sections. In addition, the potential

function of Rapsyn in the CNS will also be summarized, which
may give light on further research on Rapsyn.

Rapsyn in the neuromuscular junction
formation
The presynaptic substructure, postsynaptic substructure, and
the surrounding Schwann cell compose the classic synap-
tic unit in the NMJ. The presynaptic motor nerve termi-
nal can release its specialized versicles containing acetyl-
choline (ACh), and the ACh induces a contractile state of the
muscle by regulating the electrical activity. The postsynap-
tic motor endplate is a tiny patch, occupying <0.1% of the
muscle surface, and nAChRs aggregate into high-density clus-
ters on the tiny size of the muscle cell membrane. Rapsyn
is not only the specialized scaffold protein to be responsible
for the postsynaptic motor endplate via anchoring nAChRs
to the underlying cytoskeleton and the overlying basal lam-
ina but also induces aggregating of nAChRs [8]. Rapsyn is
not required to cluster the muscle-specific kinase (MuSK)
in vivo [8].

The Rapsyn-deficient mice demonstrated the critical role
of Rapsyn in 1995, and the mutant mice died of breath dis-
ability within a few hours of birth, resulting from the absent
nAChR aggregate and abnormal nerve branching [3, 9]. In
Rapsyn-deficient mice, MuSK remains concentrated at synap-
tic sites, but nAChRs fail to aggregate in the NMJ [10].
Moreover, Rapsyn is required for nAChR phosphorylation
in MuSK signaling [10]. nAChRs localization is mediated by
the motoneuron-derived Agrin and requires Rapsyn [11, 12].
Rapsyn interacts with nAChR via the α-helical motif between
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Figure 1. Protein structural diagram and the interacting factors of Rapsyn. (A) Rapsyn’s full length is 412 amino acids, and the mature pro-
tein’s first methionine is cut off. Rapsyn links to the postsynaptic membrane via an N-terminal myristoylated site (Gly2). Rapsyn contains a myristy-
lation motif, seven tandem tetratricopeptide repeats (TPRs), a coiled-coil (CC) domain, a Ring-H2 domain, and a phosphorylation motif; (B) The
factors interacting with Rapsyn in the NMJ. Most factors are associated with cellular skeletal protein, such as actin filament (F-actin), intermedi-
ated filament, and microtube; some form complex with Rapsyn. Rapsyn maintains the nAChR clusters via anchoring with sarcolemma or cellular
skeletal protein directly/indirectly. CK2: Casein kinase 2; HSP90β: Heat shock protein 90β; Lrp4: Low-density lipoprotein receptor-related protein 4;
MACF1: Microtubule actin cross-linking factor 1; MuSK: Muscle-specific kinase; nAChR: Nicotinic acetylcholine receptor; TPR: Tandem tetratricopeptide
repeats; TrkA: Neurotrophic receptor tyrosine kinase 1; NMJ: Neuromuscular junction.

the α, β, and γ subunits [11]. Versatile factors interact with
Rapsyn to induce and enhance nAChR clustering (Figure 1B).

Overview function of Rapsyn domain

N-terminal 15-amino-acid of Rapsyn is sufficient to target green
fluorescent protein (GFP) to the plasmamembrane viamyristy-
lation. Two TPRs [1–90 amino acid (a.a.)] are sufficient to pro-
mote Rapsyn self-association, and the CC domain (298–331 a.a.)
directly binds to the nAChR cluster [5, 13, 14].

The TPR domain of Rapsyn can interact with the bulk of the
kinase domain, including MuSK, and the interaction between
Rapsyn and MuSK is not dependent on the tyrosine phospho-
rylation of the MuSK sequences [15]. Intriguingly, MuSK cyto-
plasmic domain effectively co-distributes with Rapsyn, which
confers TrkA (Neurotrophic receptor tyrosine kinase 1), an
inactive receptor tyrosine kinase, to associatewith Rapsyn [15].
Surprisingly, Rapsyn-induced MuSK clustering depends on
the MuSK ectodomain but not the cytoplasmic domain, and
the transmembrane protein β-dystroglycan may be the linker
between MuSK extracellular domain and Rapsyn cytoplasmic
domain [5].

Association with nAChR

Neither the N-terminal myristylation nor the Ring-H2 domain
of Rapsyn is required for stable contact with the postsynaptic
membrane in the NMJ. The CC domain of Rapsyn is critical
for nAChR aggregation [16]. nAChR is exceptionally responsive
to nicotine. Independent of Agrin signaling, Rapsyn interacts
with the loops of nAChRwith different affinities via an α-helical
structural motif, anchoring, and clustering highest for β-loop
being followed by ε-loop and α-loop of nAChR [11]. Rapsyn con-
struct lacks the α-helical domain resulting in severe alteration
of nAChR turnover and synapse fragmentation [17].

Although Rapsyn and nAChR form an aggregate indepen-
dent of neural Agrin, treating with neural Agrin leads to the
pre-existing clusters between Rapsyn and nAChR separating
directly, and new small clusters accumulate again [18]. The
synaptic activity is dispensable for theRapsyn insertion into the
postsynaptic membrane of NMJ [16]. Intriguingly, in cultured
myoblast without nAChR, Rapsyn mainly localizes to the lyso-
somes. However, nAChR can target the cell membrane with-
out association with Rapsyn [16]. In the presence of nAChR,
Rapsyn is localized to themembrane and induces the formation
of nAChR clustering [16].
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Figure 2. Rapsyn-dependent signaling pathways in theNMJ end plate.Rapsynmodifies nAChR in several ways, and its stability is also regulated by other
factors. (1) Rapsyn can activate tyrosine kinases to phosphorylate nAChR; (2) Rapsyn induces the phosphorylation of nAChR β subunit Y390, and MuSK can
enhance the phosphorylation; (3) Rapsyn may be phosphorylated by PKC and then induces nAChR insertion into the membrane; (4) E3 ligase activity of
Rapsyn Ring-H2 domain modulates nAChR stability, including neddylation (NEDD), ubiquitination (Ub), and sumoylation (SUMO); (5) Calpain participates
in acetylcholine-induced nAChR cluster dispersion, and Rapsyn inhibits its function; (6) HSP90β is necessary for Rapsyn stabilization (arrow means
promoting, and vertical crossing lines in red color means inhibiting; “↑” indicates increase, and “↓” shows decrease). Frk: Fyn-related Src family tyrosine
kinase; Fyn: FYN proto-oncogene, Src family tyrosine kinase; HSP90β: Heat shock protein 90β; MuSK: Muscle-specific kinase; NEDD: Neddylation; nAChR:
Nicotinic acetylcholine receptor; P: Phosphorylation; PKC: Protein kinase C; Src: SRC proto-oncogene, non-receptor tyrosine kinase; SUMO: Sumoylation;
Ub: Ubiquitination.

Rapsyn efficiently immobilizes nAChR. nAChRs are con-
nected by three Rapsyn bridges at least to form a 2D network,
and half of the nAChRs belong to Rapsyn-connected groups
composed of 2–14 AChRs [19, 20]. Most nAChR is immobile, and
20% is confined to 50 nm. Devoid of Rapsyn, the immobile pop-
ulation of nAChR decreased three times, and half of the mobile
nAChR restricted diffusion in domains of 120 nm. Surprisingly,
the size of the nAChR cluster is strongly reduced with the pres-
ence of Rapsyn [21].

Rapsyn facilitates nAChR phosphorylation by localizing or
activating tyrosine kinase via the C-terminal domain, which
is sufficient and necessary for tyrosine kinase activation and
tyrosinephosphorylation (Figure 2).MuSKalone cannot induce
the phosphorylation of nAChR β subunit tyrosine 390 (Y390),
but Rapsyn alone induces the phosphorylation of Y390. Fur-
thermore, Rapsyn plus MuSK enhances the phosphorylation
of Y390 more than Rapsyn alone, and deletion of the Rap-
syn Ring-H2 domain abolishes the phosphorylation induced
by MuSK [22]. The indirect activation of MuSK can promote
Rapsyn-inducednAChRclustering, but the intermediatemolec-
ular betweenMuSK and Rapsyn is not well known [12].

The Ring-H2 domain of Rapsyn contains E3 ligase activity
modulating nAChR (Figure 2). Modifications mediated by Rap-
syn E3 ligase activity may include ubiquitination, neddylation,
or sumoylation, whichmay affect the stability of theNMJ struc-
ture and function proteins [6, 23]. The mutation of cysteine
366 (p.C366A) abolishes its enzymatic function and severely
impairs nAChR clustering [6, 12, 23].

Rapsyn interacts with Calpain, a calcium-dependent pro-
tease, suppressing Calpain protease activity (Figure 2). Calpain
participates in ACh -induced nAChR cluster dispersion, and
Rapsyn stabilizes nAChR aggregates by inhibiting the protease
activity of Calpain [24].

Association with skeleton protein and self-association

Rapsyn binds with Actin and Actinin as a scaffold protein in
theNMJ [25, 26], bridging nAChR to the cytoskeleton and fixing
the cluster. Agrin stimulates nAChR clustering and enhances
the interaction of Rapsyn and α-Actinin [25, 26], which can
be disrupted by cholinergic stimulation [26]. Downregulat-
ing expression of α-Actinin inhibits Agrin-mediated nAChR
clustering [26].

The Ring-H2 domain of Rapsyn interacts with the cytoplas-
mic domain of β-Dystroglycan [13, 14, 27]. In Rapsyn-deficient
mice, the nAChR cluster is absent in the postsynaptic endplate,
and some peripheral membrane proteins are also missing, such
as β-dystroglycan and Utrophin [27].

Rapsyn forms a complex with α-Syntrophin and α-
Dystrobrevin at the crests of junctional folds in the
NMJ. Like Rapsyn, α-syntrophin turnover is faster than
nAChR [28]. Intriguingly, α-Syntrophin deficiency alto-
gether abolishes the interaction between Rapsyn and α-
Dystrobrevin in mice, which Utrophin can rescue. However,
α-Dystrobrevin null does not affect the complex between
Rapsyn and α-Syntrophin, nor the turnover of Rapsyn and
α-Syntrophin [28].
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The TPR domain of Rapsyn binds microtubule actin
cross-linking factor 1 (MACF1), enhancing Rapsyn’s connection
with microtubules and nAChR immobilization [25, 29–32].
MACF1 binds Rapsyn and serves as a synaptic organizer for the
microtubule-associated proteins Microtubule-associated pro-
tein RP/EB family member 1 (EB1) and Microtubule-associated
protein 1B (MAP1B) and the actin-associated protein
Vinculin [29].

Rapsyn interactswithβ-Catenin, and the latter is regardedas
one of the linkers between the β-catenin-associated cytoskele-
ton and nAChR, independent T-cell factor (TCF) [33, 34].
Intriguingly, Wang et al. found that Wnt/β-catenin sig-
naling negatively regulates nAChR cluster formation via
repressing Rapsyn expression [35]. Wnt3a treatment inhibits
Agrin-induced nAChR clustering and promotes nAChR cluster
dispersion, which can be prevented by Dickkopf1 (DKK1), one
of the antagonists of theWnt/β-catenin signaling [35].

In addition, Rapsyn interacts with Plectin 1f (Plec1f) to
bridge nAChRs and the intermediate filament network beneath
the postsynaptic membrane [23, 36]. The interaction between
Rapsyn and the cytoskeletal organizer can also be enhanced
by Rapsyn binding Drebrin, an Actin, and microtubule cross-
linker [31].

Each TPR of Rapsyn is composed of 34 amino acids and
adopts a helix-turn–helix fold, which mediates dimerization
and oligomerization [27, 37, 38]. Rapsyn forms clusters by
oligomerizationmediated by TRPs [39]. Substitution of a termi-
nation codon for Asp254 produced a truncated (28-kD) protein
associated poorly with the cell membrane, and themutant Rap-
syn with TPRs 1–7 deletion fails to aggregate nAChRs [40]. No
less than twoTPRs are required for Rapsyn self-association [14].

Phosphorylation on Rapsyn

Dependent on the thiamine (vitamin B1) triphosphate (ThTP)
as the phosphate donor, histidine residue(s) of Rapsyn can be
phosphorylated with endogenous protein kinase. In addition,
Zn2+ inhibits phosphorylation [2, 41], indicating that the zinc
finger domain controls the phosphorylation state of Rapsyn in
the process [2]. However, the ThTP-dependent kinase has not
been identified. Dephosphorylation of thiamine diphosphate
(ThDP) and ThTP is coupled to the thiamine release upon elec-
tric stimulation of nerves. Thiamine co-release with ACh facili-
tates acetylcholinergic neurotransmission via interaction with
taste 2 receptor member 1 (TAS2R1), activating synaptic ion
currents [41].

Moreover, the zinc finger is also a consensus site for serine
phosphorylation, but it is unclear whether the serine residue is
phosphorylated or not [41]. Rapsyn associates with post-Golgi
vesicles (PGV), one of the distal exocytic compartments, and
is co-targeted explicitly with nAChR to the postsynaptic mem-
brane. Rapsyn serine is not phosphorylated in the PGV, and
Rapsyn serine and nAChR tyrosine phosphorylation occur in
the postsynaptic membrane, which involves the regulation of
cluster formation [42].

MuSK induces tyrosine phosphorylation of Rapsyn [11].
Rapsyn binds to each nAChR subunit via the intracellu-
lar loop between the receptor subunit’s third and fourth

transmembrane segments [38], and nAChR directly interacts
with Src-family tyrosine protein kinases. Rapsyn can activate
tyrosine kinases, such as SRC proto-oncogene, non-receptor
tyrosine kinase (Src), FYN proto-oncogene, Src family tyrosine
kinase (Fyn), and fyn-related Src family tyrosine kinase (Frk),
via forming a complex [43], and the complex phosphorylates
nAChR β and δ subunits [43]. Moreover, APC regulator of WNT
signaling pathway (APC) and Src-family kinases directly bind
to nAChRs, stabilizing nAChRs [38].

Amino acids 403–406 of Rapsyn encompass a consensus
sequence for protein kinase A (PKA) and protein kinase C (PKC)
phosphorylation [13]. Rapsyn interacts with PKA type I via
an amphipathic α-helical stretch (a.a. 299–331) of the Rapsyn
CC domain, indicating Rapsyn anchors PKA type I [17, 44, 45].
The inhibitor of PKC and the broad-spectrum kinase inhibitor
staurosporine abrogate nAChR insertion into the membrane
without affecting the insertion of Rapsyn (Figure 2). Moreover,
the insertion of Rapsyn or nAChR is not disturbed by PKA
inhibitors [18]. The insertion of Rapsyn and nAChR may be
operating independently.

Rapsyn has strong interaction with protein kinase Casein
kinase 2 (CK2), but the potential role for the CK2/Rapsyn inter-
action is unclear because Rapsyn is not phosphorylated by
CK2 [46].

Transportation and turnover

Rapsyn undergoes liquid–liquid phase separation (LLPS) and
condensates into liquid-like assemblies [20], which can recruit
AChRsand signalingproteins forpostsynaptic differentiation to
formmembrane compartments. Multivalent binding of TPRs is
essential to Rapsyn LLPS [20, 47].

Rapsyn interacts with heat shock protein 90β (HSP90β),
and disruption of the interaction attenuates nAChR cluster
formation in vitro and impairs the development and mainte-
nance of NMJ. HSP90β is necessary for Rapsyn stabilization
and mediates the proteasome-dependent degradation, indicat-
ing HSP90β regulates Rapsyn turnover [48].

The Rapsyn/nAChR interaction leads to nAChR clus-
tering and a clustering-independent fast recovery from
desensitization [49]. The halftime of Rapsyn recovery at
clusters is about 1.5 h, whose turnover is 3–6 times quicker than
nAChR [18, 48, 50], implying Rapsyn may be a bi-functional
molecular as both an adaptor protein and a signaling
protein [23]. In addition, nAChR turnover is sensitive to
the alteration of the synaptic activity, whereas Rapsyn is
unaffected, illustrating distinct mechanisms of turning over
between them [50].

Rapsyn mediates nAChR clustering and maintenance
by interacting via lipid rafts [51]. Rapsyn and AChR are
co-transported in the same PGV to the innervated surface of
the Torpedo electrocyte [42, 52]. After being co-transfected
into COS-7 cells, Rapsyn and AChR co-distribute within distal
exocytic routes besides at the plasma membrane [53]. Rapsyn,
an itinerant vesicular protein in the lipid rafts, may play a
dynamic role in sorting and targeting its companion receptor
to the postsynaptic membrane [53, 54]. Rapsyn cannot form
self-clusters separating fromnAChRs before synapse formation
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in zebrafish. Without nAChR, Rapsyn is retained in the Golgi
complex in the postsynaptic cell of zebrafish NMJ [55].

Change of Rapsyn expression

In aging mice, denervated fibers accumulate due to reinner-
vation failure, and nAChR cluster density negatively corre-
lates with endplate Rapsyn [56]. Silencing Rapsyn expres-
sion with short hairpin RNA (shRNA) in the NMJ causes a
one-third reduction in the protein level of Rapsyn and nAChR,
but it leads to the sodium channel protein being increased
two third. Unexpectedly, secondary folds of the endplate in
the Rapsyn-silencing muscle increase, and the neuromuscular
transmission are mildly damaged [57].

Skeletal muscle undergoes repeating cycles of denervation
and reinnervation in adult life, and in very advanced age,
the denervated muscle fibers accumulate remarkably, accom-
panied by severe muscle atrophy impairing mobility. Dener-
vated myofibers in senescent rats (36 months) muscle are on
35%–50% smaller than innervated fibers in the young adult rat
(8–10 months) [58]. Impaired capacity reinnervation might
contribute to the accumulation of persistently denervatedmus-
cle fibers in the normal process of aging muscle [59]. Rapsyn
expression is a benefit to the AChR intensity in aging muscle.
Compared to the young rat (8 months) muscle, Rapsyn at the
endplate in the very old rat (35 months) muscle increases with
only a 10% decline in AChR intensity. However, in the Sarco
mice (8 months) muscle, a murine model of sporadic denerva-
tion, Rapsyn expression declined to associate with AChR inten-
sity decrease by 25%, although transcripts of AChR subunits are
upregulated [59]. Lamin A/C, an intermediate filament factor,
is decreased in the aging skeletal muscle of mice, its deficient in
skeletal muscle (HSA-Lamin -/-) causes NMJ deficits, including
progressive denervation, AChR fragmentation, and neuromus-
cular dysfunction, and the NMJ deficits can be attenuated by
expression of Rapsyn in muscles [60]. The very old rat muscle
exhibitsmuchmore accumulation of small fibers (>20%), a sign
of persistent sporadic denervation, than small fibers in Sarco
mice (<6%), suggesting a reduced capacity of reinnervation in
aging muscle [59].

The mechanisms of NMJ decline in aging animals are not
clear. NMJ fragmentation is associated with the aging process
and could result from the degeneration and regeneration of
muscle fiber segments [23, 61–64]. However, NMJ fragmenta-
tion per se does not imply a decline in fundamental features
of transmission because neuromuscular transmission at the
highly fragmented NMJ in the very old mice (26–28 months)
diaphragms is not weakening, compared to in the middle-aged
mice (12–14 months) [65].

Special exception of Rapsyn in nAChR clustering and Rapsyn in
zebrafish

Rapsyn is dispensable for nAChRs clustering in the superior
cervical ganglion (SCG), one of the typical cholinergic synapses
in mammalian sympathetic ganglions [66]. Firstly, although
Rapsyn RNA is readily capable of being detected in the SCG,
Rapsynprotein is undetectable at thenAChR clusters. Secondly,
Rapsyn can form clusterswith neuronal AChR ormuscle AChRs

in heterologous cells, but only the last clusters appear on the
plasma membrane. Neuronal AChR clusters induced by Rap-
syn are always intracellular. Lastly, in Rapsyn-deficient mice,
bothnon-synaptic and synapticAChRclusters can formwithout
Rapsyn [66]. Therefore, the evidence indicates that Rapsyn is
not an essential mediator of nAChR clustering at SCG synapses.

A Rapsyn-deficient mutant line of zebrafish shows fatigue.
The mutant zebrafish exhibits exaggerated depression in
response to high-frequency stimulation than the wild-type.
Moreover, the vesicle reloading and release in the mutant
zebrafish is significantly slower at individual release sites
during high-frequency activities. Accordingly, compromised
presynaptic release and reductions of postsynaptic receptor
density in the mutant zebrafish collectively decrease synaptic
strength, thus causing use-dependent fatigue [67].

Promoter of Rapsyn

According to one synapse-specific transcription model, the N-
box, with CCGGAA as the core consensus sequence, is required
for mediating transcription in NMJ subsynaptic nuclei. More-
over, N-box confers transcription of nAChR,Utrophin, andACh
esterase genes [68–71]. Although Rapsyn is expressed explicitly
in the postsynaptic membrane in the NMJ, N-box is not found
in the Rapsyn promotor.

There are two Kaiso sites and three E-box in the Rapsyn
promotor region, and one Kaiso site partially overlaps one of
the E-box motifs (E-box-Kaiso site) [68, 72]. Kaiso belongs to
the POZ, a zinc finger family transcription factor, and the spe-
cific core consensus sequence is CTGCNA (N is any nucleotide).
δ-catenin is one of the binding partners for Kaiso and forms a
complex with Kaiso. Rapsyn interacts with Kaiso, and its pro-
motor can be activated byKaiso and δ-catenin, strongly indicat-
ing that Rapsyn is one direct sequence-specific target of Kaiso
and δ-catenin [68].

Ubiquitylation and other function

A post-translational mechanism regulates Rapsyn protein sta-
bility. 43 kDa receptor-associated protein of the synapse
homolog (rpy-1) in Caenorhabditis elegans is a Rapsyn homolog
in mammals, ubiquitinated by a similar complex in RPY1 and
RAPSYN [73].

The Ring domain of Rapsyn comprises E3 ligase function,
and the enzymatic activity via mediating nAChR ubiquityla-
tion/neddylation is essential for nAChR clustering [6]. Muta-
tion of cysteine 366 (p.C366A) in the zinc finger abolished its
enzymatic function.

Recently, research found that Rapsyn can be co-
immunostaining with chromodomain helicase DNA-binding
protein 8 (CHD8) at the sarcoplasmic side in the NMJ, and the
potential role of the interaction is also unclear [74]. Rapsyn
overexpression inmuscles attenuates theNMJ deficits in Lanim
A/C deficient mice [75].

Congenital myasthenic syndrome due to Rapsyn mutation

Myasthenia gravis (MG) is an autoimmune disease disabling
NMJ function and causing fatigable ocular, bulbar, and limb
muscle weakness. CMS has a similar phenotype, but it belongs
to ageneticdiseasewithanonset early in lifedue tomutationsof
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Figure 3. Mutations of Rapsyn in congenital myasthenic syndrome.Missense mutation or nonsensemutation of Rapsyn is shown in the right panel, and
the “X” in the mutation represents nonsense mutation. Insertion and deletion in exon or intron causing frameshift of Rapsyn are shown in the left panel. The
number in the left panel represents the nucleus acid number in the cDNA, and the number in the right panelmeans the amino acid number at the protein level.

the NMJ structure gene or NMJ function proteins [6, 76–82]. In
most patients, CMS clinic symptoms present at birth or infancy,
seldompresent in the second or third decade [83].More than 35
different genes with mutation cause CMS. Mutations of genes
for postsynaptic development or function are dominant in CMS
cases, and among them, Rapsynmutations and nAChR subunits
malfunction are prevalent [78–80].

Molecularmechanisms of Rapsyn regulating NMJ formation
have made much progress, and Rapsyn mutation accounts for
about 14%–27% of CMS cases [77, 81, 84–91]. Over 50 mutations
aredispersed through theentireRAPSYNgene, associatingwith
CMS [92, 93]. Versatile mutations of Rapsyn causing CMS are
shown in Figure 3.

Different mutant Rapsyn reduces Rapsyn expression,
impedes Rapsyn self-association, hinders Rapsyn colocalization
with nAChR, and impairs nAChR clustering in the last [76–78].
Rapsynmutant-causingCMS is reviewed in this section,mainly
in the order of the mutant region.

E-box mutation

E-box consensus sequence CANNTG (N is any nucleotide) is
bounded by myogenic determination factors governing the
specification and differentiation of muscle cells. Three con-
secutive putative E-box consensuses near the codon 1 were

identified in the promotor region of Rapsyn, locating at −27
to −22 as CAGCTG, −40 to −35 as CAACTG, and −50 to −45
as CATGTG [68, 94]. E-box mutation in the Rapsyn promoter
region causes CMS via downregulation of Rapsyn and endplate
nAChR deficiency in the NMJ [94].

One patient is heterozygous for p.N88K and −27C>G
in the Rapsyn promotor, which may be the critical reason
for the failure of Rapsyn transcription [94]. In luciferase
reporter assay, −27C>G attenuates reporter gene expression
in C2C12 myotubes and myogenic differentiation 1 (MyoD)
or Myogenin-transfected HEK cells and impairs the enhancer
activity of SV40 promoter [94].

Seven patients carry homozygous −38A>G in Rapsyn
promotor without changing the E-box consensus sequence
CANNTG [94, 95]. However, −38A>G also attenuates reporter
gene expression in luciferase assays [94]. Moreover, −38A>G
localizes in the overlap region of the Kaiso site and E-boxmotifs
(E-box-Kaiso site) [68, 72, 96], and themutationmay also affect
the activation from Kaiso and δ-catenin.

TPR domain

The TPR domain of Rapsyn mediates its dimerization and
oligomerization, and at least two TPRs are required for Rap-
syn self-association [14, 39]. Nearly half of Rapsyn mutations
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causing CMS are located in the TPR domain. Theoretically, a
mutation in the TRP is regarded as impairing Rapsyn-inducing
nAChRs clustering via reducing Rapsyn self-association.

p.L14P not only localizes in the TPR1 domain of Rapsyn of
Rapsyn but also changes the amino acid in the myristylation
motif. Accordingly, it predicts potential conformational change
at the Rapsyn N-terminal membrane association [83, 96–98].
p.A25V [99] of Rapsyn impairs the association of Rapsyn with
nAChR and prevents nAChR clustering [100]. p.A25V and
p.L14P in TPR1 may disrupt the interaction of Rapsyn and
nAChR or impairs binding to plasm membrane via affecting
myristylation.

In the TPR2, p.V45M (c.133 G>A) of Rapsyn is unable to
co-cluster with nAChRs [101]. Mutation c.46insC of Rapsyn
predicts truncation of the protein [83, 97, 98], leading to TPR1
and TPR2 deficiency. Therefore, themutation abolishes Rapsyn
dimer formation, which is also one of the bases for nAChR
clustering, so it is not surprising to cause a severe effect in the
CMS. p.A73D (c.218C>A) is the last amino acid residuemutation
in TRP2 and causes CMS [102].

TPR3 mutation causing CMS includes several sites, such
as p.Y86X [103], p.N88K [83, 86, 94, 96, 97, 100, 104–120],
p.R91L [83, 99, 105], p.E94K [116], and p.C97X [121]. The func-
tional effects of Rapsyn mutations do not always correlate with
theproposed functionof themutant domain [100]. For instance,
the TPR domain regulates protein–protein interaction [122],
affecting the Rapsyn association. However, p.N88K has some
different effects. The number of Agrin-induced nAChR clusters
incorporating p.N88K of Rapsyn is decreased by 30%, and
accompanied by withdrawing Agrin, the cluster number
decreases severely, suggesting the clusters comprising Rapsyn
mutant p.N88K are unstable [100].

p.N88K (c.264C>A) of Rapsyn, one of the most preva-
lent in the European CMS cohort, does not affect Rapsyn
self-association but hinders Rapsyn recruitment nAChR
clustering [83, 86, 94, 96, 97, 104–109]. p.N88K of Rapsyn is
homozygous or heterozygous with other types of Rapsyn
mutation in the patients. p.N88K homozygous patients
were usually mildly affected, even with no symptoms
[79, 86, 97, 109]. p.N88K is regarded as an ancient founder
mutation [83, 108, 123, 124], and surprisingly, it is not infre-
quent in the healthy population,withfive heterozygous p.N88K
out of 300 healthy controls [108].

Homozygous p.N88K Rapsyn mutation impairs Rapsyn and
nAChR aggregation, and some patients, due to homozygous
p.N88K endure mild limb and ocular weakness without bulbar
and respiratorydysfunction [125]. Strikingly,mutantmicewith
p.N88K homozygous Rapsyn die soon at birth with severe NMJ
deficits [126]. Tyrosine phosphorylation of Rapsyn is required
for the self-association and ligase activity. p.N88K mutation
inhibited Rapsyn E3 ligase activity by reducing its tyrosine
phosphorylation and self-association [126].

The mutation c.358delC (p.Q120Sfs*8) [116] of Rapsyn lead-
ing to frameshift does not cause severe symptoms, which may
be due to carrying the other mutation p.N88K compensating
Rapsyn function, and the phenotype is not distinguishable in
the clinic [86].However, heterozygous forp.N88Kandp.Q124X,

resulting in the truncation of Rapsyn [83], causes the patho-
genesis of CMS with severe symptoms. The missense mutation
p.F139S (c.416T>C) [127], p.A142D, and p.R151P [121] in the Rap-
syn TPR4 domain are also related to CMS.

p.E162K (c.284G>A) [128, 129] is belonged to the
linker between TPR4 and TPR5 of Rapsyn, endowing
the inability of Rapsyn co-clustering with nAChRs [101].
p.R164C (c.490C>T) [118, 130], p.R164H (c.491G>A) [131],
p.V165M (c.493G>A) [86, 108, 115, 116, 132], and p.A189V
(c.566C>T) [127] in Rapsyn TPR5 domain are the common
missensemutations causing CMS, which does not hider Rapsyn
self-association, but diminishes co-clustering of Rapsyn with
AChR. Themutation 553insCTGTT (553ins5) brings frameshifts
and truncation of Rapsyn and leads to CMS [83, 98]. However,
the pathogenicity of mutation p.S201D between Rapsyn TPR5
and TPR6 domain causing CMS is uncertain [128]. And p.S208R
(c.624C>G)missensemutation in theRapsynTPR6domainmay
weaken Rapsyn self-association [133].

The mutation p.224insT (c.673_676insACT) of Rapsyn indi-
cates to abridge of the coiled string connection between the
loops in the TPR6 domain, which may prevent protein loop-
ing and consequently impair Rapsyn self-association or Rap-
syn co-clustering nAChR [95]. p.A246V (c.737C>T) [134] and
p.C251del (c.752_754delGCT) [135] bring missense mutation
to the beginning of Rapsyn TRP7 [134]. p.Y269X of Rap-
syn predicts truncation of the protein in the Rapsyn TPR7
domain without the CC domain and Ring-H2 domain of Rap-
syn, bringing severe consequences [97, 98]. Themissensemuta-
tion p.R282C (c.844C>T) [135], p.L283P [130], and p.L290P
(c.869T>C) [86, 116], between the TRP7 and CC domain of Rap-
syn, does not affect Rapsyn self-association but impairs Rapsyn
co-clustering with AChR.

C-terminal of Rapsyn

There are several types of mutation causing CMS in the Rap-
syn CC domain, such as frameshift mutation 1177delAA in the
Ring-H2 domain [97, 98, 110] and a large deletion of about 4.5
kb after exon6 (in the CC domain) [124].

The nonsense mutation p.E333X truncates Rapsyn before
the Ring-H2 domain [136]. p.L361R [99] is located between
the CC and the Ring-H2 domain of Rapsyn [83, 100]. p.L361R
reduces Rapsyn level via decreasing expression or increas-
ing turnover of Rapsyn, which reduces Rapsyn colocalization
with nAChR and dramatically impairs the stability of nAChR
clusters [100]. The number of Agrin-induced nAChR cluster
incorporating mutant Rapsyn is reduced by 60%, and with-
drawing Agrin, the cluster number decrease severely, indicat-
ing the unstable of the clusters similar to the part function of
N88K [100].

Mutation in the Rapsyn Ring-H2 domain is not rare, and a
partial deletion of the Rapsyn Ring-H2 domain leads to prema-
ture termination of pregnancy [137]. The mutant fetuses dis-
played no respiratorymovement and fixed limb positions [137].
Besides Rapsyn being linked to β-Dystroglycan via the Ring-
H2 domain, the domain exhibits E3 ligase activity. p.C366A and
p.C366G [117] prove that the cysteine residue is necessary for
the ligase function, and themutation impairs nAChR clustering
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Figure 4. Schematic diagram of the potential role of Rapsyn in the central nervous system. The first important question in the research of Rapsyn’s
role in the CNS is what is the cell type expressing Rapsyn. It is unknown whether the Rapsyn function in the CNS is similar to the role in the neuromuscular
junction, such as mediating protein clustering, lysosome clustering, and E3 ligase activity. CNS: Central nervous system.

in vitro and in vivo. p.K373del of Rapsyn may affect Ring-H2
function, leading to CMS [99].

Intron mutation and frameshift mutation of Rapsyn

The c.913-5T>A mutation of Rapsyn leads to the transcription
skipping exon 5 [138]. In CMSpatients, themutations of Rapsyn
c.532-2A>G [119] and c.912+1G>A [133] may also change the
splice site in a similar mechanism.

The frameshift mutation (1083_1084dupCT in exon7,
p.Y362Sfs*10) of Rapsyn lies in the Ring-H2 domain
[103, 108, 139]. The duplication causes the reading-frame
disruption during translation, and premature termination
at codon 371, which leads to E3 ligase activity is abolished.
1177delAA causes a frameshift mutation in the Rapsyn Ring-
H2 domain, and the predicting 82 missense codons plus one
stop codondisrupts theRing-H2domain [136]. p.K373del causes
rapid degradation of the mutant [100].

In addition, the patient with Rapsyn heterozygous mutation
c.1166+4_1166+5insAAGCCCACCAC (c.1166+4_1166+5ins11)
[134] in RAPSYN, which is identified as skipping exon7 in tran-
scription by RT-PCR [134]. Although the mutation c.1185delG
(p.T396Pfs*12) [116] leads to the frameshift of Rapsyn, it does
not cause more severe symptoms in the clinic [86].

Intron mutation may lead to a change in mRNA splice
and maturation. The splice mutation (IVS1-15C>A) of Rapsyn
changing in the intron 1 generates a novel acceptor splice site
(CAG/TCGCTG), causing 13 nucleotides of the intron retention
in the mature mRNA and subsequently leads to a frameshift
transcript, which produces a termination codon in exon 2 after
96 missense amino acids [130].

The splice site mutation IVS4-2A>G is an acceptor splice
sitemutation duringmRNAmaturation, foreshadowing a splic-
ing error [103, 108]. The mutation IVS1+2T>G [111] and IVS1-
15C>T [85] in Rapsyn may be owing to splice site change in
Rapsyn causing CMS.

Medication

CMS patients due to Rapsyn remarkably respond to anti-
cholinesterase medication [78, 79, 83, 86, 90, 91, 100, 102–104,
106, 134, 136, 140], and CMS patients with Rapsyn mutation
can be improved during early childhood, experience some
episodic crises precipitated by the minor infections, and
usually are resolved around age 6. After this challenging
period, minimally symptomatic remains. Pyridostigmine, an
acetylcholinesterase inhibitor, is themost commonly used CMS
treatment [81]. Medication on CMS due to Rapsyn mutation is
beneficial from the treatment with pyridostigmine, and some-
times, addition with 3,4-diaminopyridine (3,4-DAP) [91, 141],
ephedrine [132], or albuterol results in significant clinical
improvement [76–79, 87, 100, 102–104, 106, 134, 136]. Excep-
tions occasionally occur [142]; G.O. Skeie found that CMS
patients were not responding due to homozygous p.N88K of
Rapsyn to acetylcholinesterase inhibitors [143].

Fluoxetine, a selective serotonin reuptake inhibitor, is a
blocker for nAChR long-lived open channel and is used to
treat slow-channel CMS. Fluoxetine worsens clinically and
electro-physiologically the phenotype of a CMS case due to
p.N88K homozygous of Rapsyn [106, 142, 144]. The patient’s
clinical and electrophysiological phenotype is improved via the
introduction of pyridostigmine [106, 142, 144].
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Potential function of Rapsyn in the central
nervous system
Rapsyn is expressed inmuscle andnonmuscle cells and is tightly
associated with the cytoplasmic membranes, demonstrating
that Rapsyn is not specific to skeletalmuscle-derived cells [145].
Therefore, Rapsyn executes its function unrelatingwith nAChR
clustering [145]. Rapsyn can induce GABAA receptor or AchR
clustering, implying that Rapsyn may have a role in the
CNS [5, 146, 147]. The potential functions of Rapsyn in the CNS
are summarized in Figure 4.

However, it was reported that Rapsyn has little expres-
sion in the brain. The reason lies that less than 20% of Genes
with RPKM-value above 1 in all samples were discarded in the
BrainScope. Based the brain-map.org, Vergoossen et al. found
that Rapsyn is expressed in many areas in the brain, such as
the hypothalamus, basal forebrain, amygdala, parahippocam-
pal gyrus, cingulate gyrus, whitematter, mesencephalon, pons,
and myelencephalon [84].

In cells devoid of nAChRs, Rapsyn specifically induces lyso-
some clustering at a high density in the juxtanuclear region
but does not affect other intracellular organelles distribution.
In Rapsyn-deficient myoblasts, lysosomes are highly dynamic
and scatter within the cell, leading to an increase in lysosomal
exocytosis [148]. Furthermore, the E3 ligase activity of Rapsyn
may play a critical function in the CNS.

In addition, based on the meta-analysis in different pop-
ulations, Rapsyn is found to associate with the pathogene-
sis of Alzheimer’s disease (AD) [149, 150], Parkinson’s disease
(PD) [151], and lacunar stroke [152].

Conclusion
Rapsyn is a critical protein in the NMJ formation and main-
tenance via inducing and maintaining nAChR clustering.
Therefore, the Rapsyn mutant has severe effects on NMJ
function, which is one of the reasons causing CMS pathogenies.
Fortunately, patients with CMS due to Rapsyn mutation
remarkably respond to anticholinesterase medication, such
as pyridostigmine, and sometimes, addition with 3,4-DAP,
ephedrine, or albuterol results in significant clinical improve-
ment. Research implies that Rapsyn may exhibit some roles in
the CNS, and the knownmolecularmechanism of Rapsyn in the
PNSmay give a clue to explore Rapsyn action mode in the CNS.
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