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Machine learning for predicting the survival in
osteosarcoma patients: Analysis based on American
and Hebei Province cohort
Yahui Hao , Di Liang , Shuo Zhang , Siqi Wu , Daojuan Li , Yingying Wang , Miaomiao Shi , and Yutong He ∗

Osteosarcoma, a rare malignant tumor, has a poor prognosis. This study aimed to find the best prognostic model for osteosarcoma.
There were 2912 patients included from the Surveillance, Epidemiology, and End Results (SEER) database and 225 patients from Hebei
Province. Patients from the SEER database (2008–2015) were included in the development dataset. Patients from the SEER database
(2004–2007) and Hebei Province cohort were included in the external test datasets. The Cox model and three tree-based machine
learning algorithms (survival tree [ST], random survival forest [RSF], and gradient boosting machine [GBM]) were used to develop the
prognostic models by 10-fold cross-validation with 200 iterations. Additionally, performance of models in the multivariable group was
compared with the TNM group. The 3-year and 5-year cancer-specific survival (CSS) were 72.71% and 65.92% in the development
dataset, respectively. The predictive ability in the multivariable group was superior to that in the TNM group. The calibration curves
and consistency in the multivariable group were superior to those in the TNM group. The Cox and RSF models performed better than
the ST and GBMmodels. A nomogramwas constructed to predict the 3-year and 5-year CSS of osteosarcoma patients. The RSF model
can be used as a nonparametric alternative to the Cox model. The constructed nomogram based on the Cox model can provide reference
for clinicians to formulate specific therapeutic decisions both in America and China.
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Introduction
Osteosarcoma, a rare malignant tumor, accounts for approxi-
mately 35% of primary malignant bone and joint tumors [1, 2].
Osteosarcoma often occurs in children and adolescents, invades
the metaphysis of appendicular skeleton, and has a poor
prognosis [3–5]. Although the 5-year survival rate of osteosar-
coma in the United States has increased from 51.0% (in the
1980s) to 60.5% (in the 2010s), it is still the lowest among bone
sarcomas [1]. It is an imperative to develop an accurate survival
prediction model that influences the decisions of clinicians,
patients, and their families [6]. At present,mostmodels for pre-
dicting osteosarcoma are Cox proportional hazard regression
models combined with nomograms [3, 7–13]. The Cox models
need to meet the proportional hazards assumption, thus the
overall quality of these models may have not reached the opti-
mal state.

Machine learning is a new type of artificial intelligence,
which has been widely used in medical data analysis and
is a powerful tool for improving clinical strategies [14–16].
Some tree-based machine learning methods (such as survival
tree [ST], random survival forest [RSF], and gradient boost-
ing machine [GBM]) can account for interaction and effect
modification between variables and have been applied in some

prognosis studies [17–27]. In many studies, in which the cate-
gorical variablewas the dependent variable, the prediction per-
formance of machine learning is better than that of traditional
models [6, 14, 28, 29]. However, there is little research com-
paring survival prediction models for osteosarcoma, in which
the dependent variable includes survival status and survival
time. It is unclearwhether the performance of the newmachine
learning model is superior to the traditional Cox regression
model for survival prediction.

In this study, we selected patients with osteosarcoma from
the National Cancer Institute Surveillance, Epidemiology, and
End Results (SEER) database (from 2008 to 2015) to develop
four prognosis models (Cox, ST, RSF, and GBM). Patients with
osteosarcoma from the SEER database (from 2004 to 2007) and
Hebei Province cancer registry in North China were used as
external test dataset 1 and external test dataset 2, respectively.
In addition, we compared the multivariable group with the
TNM group (included only 7th American Joint Committee on
Cancer [AJCC] T, N, andM category).

This study aimed to find the optimal survival prediction
model for osteosarcoma, in order to help clinicians make
more reasonable therapeutic decisions both in America and
China.
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Materials andmethods
Data source and study population
Data of SEER cohort were obtained from the “Incidence - SEER
Research Plus Data, 17 Registries, Nov2021 Sub (2000–2019)”
of the SEER database, a population-based cancer registry of
the National Cancer Institute in the United States (https://seer.
cancer.gov/). A total of 2912 osteosarcoma patients from the
SEER database were included in this study. The inclusion cri-
teria for the patient were the following: (1) Year of diagnosis:
“2004–2015”; (2) Site recode ICD-O-3/WHO 2008: “Bones and
Joints,” and behavior code ICD-O-3: “Malignant”; (3) AYA site
recode 2020 Revision: “Osteosarcoma”; and (4) First malignant
primary indicator. The exclusion criteria were the following:
(1) Missing survival information (diagnostic confirmation was
“autopsy”, “death certificate only cases”, or “unknown”); and
(2) Survival months less than one month or unknown.

The Hebei Province cohort was recruited from Hebei
Province cancer registry in North China. We included
225 patients who were first diagnosed with osteosarcoma
between 1 January 2008 and 31 December 2021. Patients were
followed-up by passive and active methods. Passive follow-up
information was collected through readmission information,
outpatient records, and all cause of death database in Hebei
Province. Active follow-up was conducted trimonthly by pro-
fessionally trained personnel. The end date for follow-up was
20 January 2022. Second, we excluded those with incomplete
survival information (missing survival information) or survival
months less than one month or unknown.

Predictors and outcome
We included 11 predictors (sex, age, marital status, site, T cat-
egory, N category, M category, grade, surgery, radiation, and
chemotherapy) into the ST, RSF, and GBMmodels of the multi-
variable group. As the Cox proportional hazard model needs to
meet the proportional hazards assumption, Coxmodel included
only the variables without overlapping in Kaplan–Meier curves
and those having statistically significant difference in log-rank
test. In addition, we compared themultivariable groupwith the
TNM group (only included 7th AJCC T category, N category,
and M category). To avoid bias caused by different variables,
we set the same variables group (four models included only
variables that met the proportional hazards assumption). Sur-
vival months were calculated from the date of diagnosis to the
date of death due to osteosarcoma or the end of follow-up. The
outcome variables were survival months and 3-year and 5-year
cancer-specific survival (CSS).

Model development and testing
In this study, patients in the SEER cohort from 2008 to 2015
were assigned to the development dataset. Patients from 2004
to 2007 comprised the external test dataset 1. Patients from
Hebei Province cohort formed the external test dataset 2. Cox,
ST, RSF, and GBM were used to develop the prediction models.
All models were built on the development dataset by 10-fold
cross-validation with 200 iterations. Discrimination of the sur-
vival prediction models was quantified by concordance index
(C-index) and area under the receiver operating characteristic

curve (AUC). Calibration curves were used to evaluate the con-
sistency between the predicted and observed values of CSS of
the survival prediction models.

Cox is a popular semi-parametric model for survival analy-
sis, which can be defined by formula:

h(t) = h0(t) � e
β1X1+β2X2+···+βpXp

where t represents the survival time and βp is the coefficient of
covariateXp andmeasures the impact of the covariate.h(t) is the
hazard function of individuals with covariates X1, X2, . . . ,Xp at
time t. h0(t) is the baseline hazard.

The CART algorithm was used to construct the tree
structure [30, 31]. The procedure consisted of three steps. First,
we examined all allowable splits on each predictor variable and
choose a split point that maximizes the survival differences
between children nodes based on the log-rank test. Second,
we repeated the procedure to split the children nodes until the
tree met the stopping criteria (all terminal nodes containing
only the minimum number of unique events). Third, the
split-complexity measure was used in the pruning step.

RSF is an ensemble tree method for the analysis of
right-censored survival data [32]. The algorithm of RSF was
the following: First, B bootstrap samples were drawn from the
original data. Each bootstrap sample, including two-thirds of
the original data, was used to train data. Second, in order to
grow a ST for each bootstrap sample, we randomly selected p
candidate variables at each node of the tree. The criterion of
growing a tree was the maximization of the survival difference
between each branch. Third, the cumulative hazard function
(CHF) of each tree was averaged to achieve an ensemble
CHF. Finally, the prediction error for the ensemble CHF was
calculated, by using out-of-bag data (OOB, the rest one-third of
the original data) to avoid overfitting.

GBM is a gradient-descent-based formulation of boosting
methods [33]. The basic idea is to train new base learners
according to the negative gradient information of the loss func-
tion of the current model. Then, it combines the trained base
learners with the existing model in the form of accumulation.
This process aimed to continuously reduce the loss function and
deviation.

Ethical statement
The authors are accountable for all aspects of the work in
ensuring that questions related to the accuracy or integrity
of any part of the work are appropriately investigated and
resolved. The study was conducted in accordance with the Dec-
laration of Helsinki (as revised in 2013). The authors obtained
authorization to access the SEER Research Data supported by
the National Cancer Institute with approval number 11241-
Nov2021. Because public and anonymous data from the SEER
databasewereused, informedpatient consentwasnot required.
The Ethics Committee of the Fourth Hospital of Hebei Medi-
cal University/The Tumor Hospital of Hebei Province has con-
firmed that no ethical approval was required. Informed consent
was obtained from all individual participants included in the
study.
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Figure 1. Flowchart of study design and patient selection. SEER: Surveillance, Epidemiology, and End Results; ST: Survival tree; RSF: Random survival
forest; GBM: Gradient boosting machine; TNM: Tumor, node, metastasis.

Statistical analysis
The analyses were conducted using the statistical software R
(version 4.1.2). R package “randomForestSRC” was used for
missing data imputation. R packages “survival,” “rpart,” “ran-
domForestSRC,” and “gbm” were used to develop the models.
The value of P< 0.05 was considered statistically significant.

Results
Demographic characteristics of patients
Figure 1 depicts the flowchart of study design and patient selec-
tion. A total of 2912 patients with osteosarcomawere diagnosed
from 2004 to 2015 in the SEER program. We excluded 365
patients who did not meet the inclusion criteria. Finally, 1737
patients (from 2008 to 2015) were included in the development
dataset and 810 patients (from 2004 to 2007) were included in
the external test dataset 1. The Hebei Province cohort included
225 patients. Finally, 181 patients were included in the external
test dataset 2 in accordance with the inclusion and exclusion
criteria. The 3-year and 5-year CSS were 72.71% and 65.92% in
the development dataset, 70.25%and 63.46% in the external test
dataset 1, and 55.25% and 52.49% in the external test dataset 2,
respectively (Figure 1, Table 1, and Table S1).

Of the 1737 patients in the development dataset, 954 (54.9%)
weremale and 783 (45.1%)were female. Therewere 921 (53.0%),
415 (23.9%), 246 (14.2%), and 155 (8.9%) patients who were
0–19 years, 20–39 years, 40–59 years, and ≥ 60 years old,
respectively. Regarding marital status, 379 (21.8%) were mar-
ried and 1280 (73.7%)werenotmarried. Osteosarcomaoccurred

in appendicular skeleton (including long and short bones of
the upper and lower extremities) in 1573 (90.6%) patients and
occurred in pelvis, spine and skull in 164 (9.4%) patients.
Regarding theTcategory, 702 (40.4%)wereT1, 981 (56.5%)were
T2, and 54 (3.1%) were T3. Only 42 (2.4%) were N1. Regarding
the M category, 1409 (81.1%) were M0, 188 (10.8%) were M1a,
and 140 (8.1%) were M1b. Regarding grade, 173 (10.0%) were
well differentiated or moderately differentiated, whereas 1564
(90.0%)were poorly differentiated or undifferentiated. Regard-
ing treatment, 1501 (86.4%) patients underwent surgery, 120
(6.9%) received radiation therapy, and 1391 (80.1%) received
chemotherapy. In the imputation data, the detailed characteris-
tics of patients with osteosarcoma in the development dataset,
external test 1, and external test 2 are shown in Table 1.

Model performance
According to the Kaplan–Meier curves and log-rank tests for
different variables (Figure 2), the variables which met the pro-
portional hazards assumption were sex, age, marital status,
site, T category, N category, M category, grade, surgery, and
radiation. Those variableswere included in theCoxmodel of the
multivariable group. As the ST, RSF, and GBM models did not
need tomeet theproportional hazards assumption, the included
variables of the multivariable group were sex, age, marital sta-
tus, site, T category, N category, M category, grade, surgery,
radiation, and chemotherapy.

To compare the performance of the four models (Cox, ST,
RSF, and GBM), we computed the C-index and plotted the
receiver operating characteristic curves (ROC) and calibration
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Table 1. Demographic characteristics of patients with osteosarcoma in imputation data

Variables Development dataset External test dataset 1 External test dataset 2

N (%) N (%) P valuea N (%) P valueb

Total 1737 (100) 810 (100) 181 (100)

Sex 0.298 0.363

Male 954 (54.9) 427 (52.7) 93 (51.4)
Female 783 (45.1) 383 (47.3) 88 (48.6)

Age (years) 0.608 <0.001

0–19 921 (53.0) 441 (54.4) 53 (29.3)
20–39 415 (23.9) 174 (21.5) 45 (24.9)
40–59 246 (14.2) 119 (14.7) 50 (27.6)
≥60 155 (8.9) 76 (9.4) 33 (18.2)

Marital status 0.220 <0.001

Married 379 (21.8) 180 (22.2) 104 (57.5)
Unmarried 1280 (73.7) 581 (71.7) 75 (41.4)
Otherc 78 (4.5) 49 (6.0) 2 (1.1)

Site 0.587 <0.001

Appendicular skeleton 1573 (90.6) 728 (89.9) 101 (55.8)
Pelvis and spine 164 (9.4) 82 (10.1) 80 (44.2)

T category 0.070 <0.001

T1 702 (40.4) 365 (45.1) 78 (43.1)
T2 981 (56.5) 418 (51.6) 89 (49.2)
T3 54 (3.1) 27 (3.3) 14 (7.7)

N category 0.762 <0.001

N0 1695 (97.6) 792 (97.8) 162 (89.5)
N1 42 (2.4) 18 (2.2) 19 (10.5)

M category 0.394 0.018

M0 1409 (81.1) 658 (81.2) 151 (83.4)
M1a 188 (10.8) 77 (9.5) 9 (5.0)
M1b 140 (8.1) 75 (9.3) 21 (11.6)

Grade 0.898 0.819

Well differentiated or moderately differentiated 173 (10.0) 82 (10.1) 19 (10.5)
Poorly differentiated or undifferentiated 1564 (90.0) 728 (89.9) 162 (89.5)

Surgery 0.280 0.056

No 236 (13.6) 123 (15.2) 34 (18.8)
Yes 1501 (86.4) 687 (84.8) 147 (81.2)

Radiation 0.488 <0.001

No 1617 (93.1) 760 (93.8) 143 (79.0)
Yes 120 (6.9) 50 (6.2) 38 (21.0)

Chemotherapy 0.542 <0.001

No 346 (19.9) 153 (18.9) 75 (41.4)
Yes 1391 (80.1) 657 (81.1) 106 (58.6)

aP value was derived from the chi-square test comparing the development dataset and external test dataset 1; bP value was derived from the chi-square
test comparing the development dataset and external test dataset 2; cOthers include divorced, separated, and widowed.

curves in 3-year survival cohort and 5-year survival cohort of
different datasets. Figure 3 and Table 2 show the C-indices for
various models for predicting 3-year CSS of osteosarcoma in
themultivariable group and TNM group. The C-indices in train
datasets of the multivariable group were 0.80 (0.75–0.84), 0.77
(0.73–0.81), 0.82 (0.78–0.86), and 0.80 (0.76–0.84) for the Cox,

ST, RSF, and GBM models, respectively. In the multivariable
group, except for ST in the external test dataset 2, the C-indices
of other models were higher than 0.70. The C-indices in train
datasets of the TNM group were 0.71 (0.67–0.75), 0.68 (0.64–
0.72), 0.71 (0.65–0.77), and 0.71 (0.65–0.77) for the Cox, ST, RSF,
andGBMmodels, respectively. In the TNMgroup, the C-indices
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Figure 2. Kaplan–Meier curves for different variables: (A) Sex; (B) age; (C) marital status; (D) tumor sites; (E) T categories; (F) N categories; (G) M cate-
gories; (H) grades; (I) surgery; (J) radiation; (K) chemotherapy.

Figure 3. Histogram of C-indices for various models for predicting 3-year CSS of osteosarcoma in the multivariable group and TNM group: (A)
Train dataset; (B) Test dataset; (C) External test dataset 1; (D) External test dataset 2. CSS: Cancer-specific survival. C-index: Concordance index; SEER:
Surveillance, Epidemiology, and End Results; ST: Survival tree; RSF: Random survival forest; GBM: Gradient boosting machine; TNM: Tumor, node,
metastasis.

of the Cox, RSF, and GBM models were higher than 0.70 in
the train dataset and external test dataset 2. The C-indices for
variousmodels of every dataset in themultivariable groupwere
higher than that in the TNM group. The C-indices of other

datasets or models were not higher than 0.70. The C-indices
of the Cox, RSF, and GBM models were higher than that of the
ST model in each dataset both in the multivariable group and
in TNM group. Figure S1 and Table S2 show the C-indices for
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Table 2. C-indices for variousmodels for predicting 3-year CSS of osteosarcoma in themultivariable group and TNM group

Models
Train dataset
Mean (95% CI)

Test dataset
Mean (95% CI)

External test dataset 1
Mean (95% CI)

External test dataset 2
Mean (95% CI)

Multivariable group

Cox 0.80 (0.75–0.84) 0.78 (0.65–0.91) 0.72 (0.65–0.78) 0.75 (0.65–0.85)
ST 0.77 (0.73–0.81) 0.76 (0.63–0.89) 0.70 (0.64–0.77) 0.65 (0.53–0.77)
RSF 0.82 (0.78–0.86) 0.77 (0.64–0.90) 0.74 (0.68–0.81) 0.75 (0.65–0.85)
GBM 0.80 (0.76–0.84) 0.78 (0.65–0.91) 0.74 (0.67–0.80) 0.74 (0.64–0.84)

TNM group

Cox 0.71 (0.67–0.75) 0.68 (0.53–0.82) 0.68 (0.60–0.76) 0.72 (0.60–0.84)
ST 0.68 (0.64–0.72) 0.67 (0.53–0.80) 0.65 (0.59–0.71) 0.65 (0.55–0.75)
RSF 0.71 (0.65–0.77) 0.70 (0.55–0.84) 0.68 (0.60–0.76) 0.71 (0.59–0.83)
GBM 0.71 (0.65–0.77) 0.69 (0.54–0.84) 0.68 (0.60–0.76) 0.72 (0.60–0.84)

C-index: Concordance index; CSS: Cancer-specific survival; ST: Survival tree; RSF: Randomsurvival forest; GBM:Gradient boosting
machine; TNM: Tumor, node, metastasis.
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Figure 4. ROC for various models for predicting 3-year CSS of osteosarcoma in the multivariable group and TNM group: (A) Train dataset in the
multivariable group; (B) Test dataset in the multivariable group; (C) External test dataset 1 in the multivariable group; (D) External test dataset 2 in the
multivariable group; (E) Train dataset in the TNM group; (F) Test dataset in the TNM group; (G) External test dataset 1 in the TNM group; (H) External test
dataset 2 in the TNM group. ROC: Receiver operating characteristic curve; CSS: Cancer-specific survival; ST: Survival tree; RSF: Random survival forest;
GBM: Gradient boosting machine; TNM: Tumor, node, metastasis; AUC: Area under the curve.

various models for predicting 5-year CSS of osteosarcoma in
themultivariable group and TNM group, which had the similar
results as for the 3-year CSS cohort.

Figure 4 shows AUC by picturing ROC for various models
for predicting 3-year CSS of osteosarcoma in the multivariable
group and TNM group. The AUCs in train datasets of the mul-
tivariable group were 0.82 (0.79–0.84), 0.79 (0.77–0.82), 0.85
(0.83–0.87), and0.82 (0.80–0.85) for theCox, ST,RSF, andGBM
models, respectively. The AUCs in train datasets of the TNM
groupwere 0.73 (0.70–0.76), 0.72 (0.68–0.75), 0.73 (0.70–0.76),
and 0.73 (0.70–0.76) for the Cox, ST, RSF, and GBM models,
respectively. Except ST in the external test dataset 2, the AUCs
of multivariable group were higher than of the TNM group in
every model of different datasets. In every dataset, the AUC of
the ST model was lower than that of the other three models.
Figure S2 shows AUC by picturing ROC for various models
for predicting 5-year CSS of osteosarcoma in the multivariable

group and TNM group. The results of the 5-year CSS cohort
were similar to those of the 3-year CSS cohort.

Calibration curve was used to visualize the consistency
between the predicted and observed values of CSS of the sur-
vival prediction models. The 45-degree gray straight line rep-
resents the perfect match between the observed (y-axis) and
predicted (x-axis) survival probabilities. A smaller distance
between model and gray straight line indicates higher accu-
racy. Figure 5 shows the calibration curves for various models
for predicting 3-year CSS of osteosarcoma in the multivariable
group and TNM group. In every dataset, the consistency of
the multivariable group was superior to the TNM group. In
the multivariable group, the consistency of the Cox and RSF
models was superior to that of the ST and GBM models. The
predicted value of the GBMmodel was lower than the observed
value, and the predicted value of the ST model was higher than
the actual value. Figure S3 depicts the calibration curves for
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Figure5. Calibration curves for variousmodels forpredicting3-yearCSSofosteosarcoma in themultivariable groupandTNMgroup: (A) Train dataset
in the multivariable group; (B) Test dataset in the multivariable group; (C) External test dataset 1 in themultivariable group; (D) External test dataset 2 in the
multivariable group; (E) Train dataset in the TNM group; (F) Test dataset in the TNM group; (G) External test dataset 1 in the TNM group; (H) External test
dataset 2 in the TNM group. CSS: Cancer-specific survival; ST: Survival tree; RSF: Random survival forest; GBM: Gradient boosting machine; TNM: Tumor,
node, metastasis.

variousmodels for predicting 5-year CSS of osteosarcoma in the
multivariable group and TNM group. The results of the 5-year
CSS cohort were similar to those of the 3-year CSS cohort.

Outcome of the Cox model
Figure 6 depicts the factors influencing the prognosis of
osteosarcoma patients based on the Cox proportional hazard
model in the development dataset of the multivariable group.
According to the forest plot, poorer CSS was associated with
older age (20–39 years with hazard ratio [HR] 1.39, 95%
confidence interval [CI] 1.12–1.73, P = 0.003; 40–59 years with
HR 2.45, 95% CI 1.83–3.29, P < 0.001; ≥ 60 years with HR 3.82,
95%CI 2.72–5.37,P<0.001) comparedwith0–19 years; having a
pelvis and spine tumor site (HR 1.67, 95%CI 1.33–2.11, P<0.001)
compared with having an appendicular skeleton tumor site; T2
(HR 1.58, 95% CI 1.31–1.90, P < 0.001) or T3 (HR 2.22, 95% CI
1.53–3.22,P<0.001) comparedwithT1;N1 (HR 1.69, 95%CI 1.17–
2.44, P= 0.006) comparedwith N0;M1a (HR 3.26, 95% CI 2.62–
4.04, P < 0.001) or M1b (HR 4.45, 95% CI 3.49–5.66, P < 0.001)
compared with M0; poorly differentiated or undifferentiated
(HR 3.87, 95% CI 2.37–6.33, P < 0.001) compared with well
differentiated or moderately differentiated; and radiation (HR
1.53, 95% CI 1.14–2.04, P = 0.004) compared with no radiation.
Improved CSS was associated with female sex (HR 0.81, 95%
CI 0.69–0.95, P = 0.011) compared with male sex; and surgery
(HR = 0.43, 95% CI 0.35–0.53, P < 0.001) compared with no
surgery.

Based on the result of the Cox model in the development
dataset of themultivariable group, a nomogramwas established
to predict the 3-year and 5-year CSS of osteosarcoma patients.
Bybringing thepatient’s variable into thenomogram, the scores
of each variable can be obtained and, finally, the scores can
be added to obtain the patient’s 3-year and 5-year CSS. For
example, we included each variable of the patient ID 771469 in
the external test set 2 into the nomogramand obtained the score

Figure 6. Influencing factors of osteosarcomapatients prognosis based
on the Cox proportional hazard model in development dataset of mul-
tivariable group. G1–G2: Well differentiated or moderately differentiated;
G3–G4: Poorly differentiated or undifferentiated.

of 412; the 3-year and 5-year CSS of this patient were 0.758
(0.713–0.806) and 0.676 (0.621–0.735), respectively (Figure 7).

Sensitivity analysis
To avoid bias caused by different variables, we set the same
variables group. In the group, the included variables in the ST,
RSF, and GBM models were same as in the Cox model, which
included sex, age,marital status, site, T category, N category,M
category, grade, surgery, and radiation. The C-index, AUC, and
calibration curves of same variables group were similar to the
multivariable group. (Table S3 and Figures S4 and S5)
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Figure 7. Nomogram for prediction of the 3-year and 5-year CSS of
osteosarcoma patients based on the Cox proportional hazard model in
development dataset of the multivariable group. G1–G2: Well differenti-
ated or moderately differentiated; G3–G4: Poorly differentiated or undiffer-
entiated. CSS: Cancer-specific survival.

Discussion
Machine learning can improve the efficiency of survival predic-
tion models, which is crucial for disease prognosis and nursing
plan. This study developed and validated four models using the
Cox and threemachine learning algorithms (ST, RSF, andGBM)
to predict the survival of osteosarcoma patients. In everymodel
of different dataset, the predictive ability of the multivariable
group was superior to the TNM group. In every dataset, the
C-index and AUC of the ST were lower than that of the other
threemodels. The calibration curves of the Cox and RSFmodels
performed better than that of the ST and GBM. In addition, the
nomogramwas established to predict the 3-year and 5-year CSS
of osteosarcoma patients.

Previous studies [34–36] showed that there was no differ-
ence in the prognosis of osteosarcoma among different eth-
nic groups. Therefore, it is feasible for us to choose the Hebei
Province cohort as the external test dataset 2. Compared with
American cohorts (the 3-year and 5-year CSS were 72.71% and
65.92% in the development data, and 70.25% and 63.46% in
the external test dataset 1, respectively), the Hebei Province
cohort (the 3-year and 5-year CSS were 55.25% and 52.49% in
the external test dataset 2, respectively) had a poorer survival.
Thismaybedue to the fact that the proportion of pelvis andpine
osteosarcoma patients in the Hebei Province cohort (44.2%)
is much higher than that in the United States (9.4%). Previ-
ous studies [35] have shown that the prognosis of pelvis and
pine osteosarcoma patients is worse than that of appendicular
skeleton osteosarcoma patients, which is consistent with the
Cox regression model in this study.

The C-index and AUC of the Cox model were similar to
that of the RSF and GBM models for predicting the survival of
osteosarcoma patients. This may be due to the small number
of predictors. Cox is a semi-parametric model, which is valid
only when the number of predictors is less than the number
of events. The advantages of machine learning are more easily
seenwith largenumber of predictors anda relatively small sam-
ple size [37]. ST model performed worst, in terms of C-index,
AUC, or calibration curve. ST divides data by maximizing the
difference between nodes, but the prediction error is large,
leading to low prediction accuracy of the model. RSF and GBM
models can compensate for the error [37]. The performance
of the GBM model is similar to the Cox and RSF models for
C-index and AUC, but is poor for calibration curve. RSF model
can be used as a non-parametric alternative to the Cox model.
The selection of methods should be based on a combination of
many factors, such as the type of data collected, data size, cal-
culation strength, model implementation skills, and software
availability [38].

The Kaplan–Meier curves showed that there were differ-
ences in survival between different marital statuses. However,
the results of multivariate Cox analysis showed that marital
status is not a factor affecting survival. The possible reason is
that the proportion of young osteosarcoma patients is higher,
and the survival rate of young patients is higher than that
of middle-aged and elderly patients. Most young patients are
unmarried. This may be the reason why was the survival of
unmarried patients higher than that of married patients in the
Kaplan–Meier curve. According to the Cox proportional hazard
model, poorer CSSwas associatedwith older age comparedwith
0–19 age group; having a pelvis and spine tumor site compared
with having a appendicular skeleton tumor site; T2 or T3 com-
pared with T1; N1 compared with N0; M1a or M1b compared
with M0; poorly differentiated or undifferentiated compared
with well differentiated or moderately differentiated; and radi-
ation comparedwithno radiation. ImprovedCSSwas associated
with female sex comparedwithmale sex and surgery compared
with no surgery. The influencing factors are consistent with
previous studies [7, 34, 37, 39–41].

The advantages of this study mainly include the following
aspects. First, in order to verify the reliability of the model,
all models were built on the development dataset by 10-fold
cross-validation with 200 iterations. Previous studies estab-
lished nomograms based on the Cox regression models using
data from a country or region and that have not been vali-
dated in the external test dataset [3, 6–8, 42–44]. Ourmodelwas
selected as the optimal model after comparing various mod-
els. In addition, we used not only data in the SEER dataset
of 2004–2007 as time cohort external test dataset, but also
used Chinese data as regional cohort external test dataset. The
external test demonstrated the reliability of our model in dif-
ferent time periods and regions. The nomogram based on the
Cox model has a wider application; it is applicable not only
to osteosarcoma patients in the United States but also appro-
priate for Chinese population. Second, to our knowledge, this
is the first study to compare multivariable groups of multiple
models with the TNM groups for osteosarcoma. Gao et al. [42]
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established a nomogram compared with AJCC stage to predict
the overall survival for postoperative osteosarcoma patients,
which was limited to patients with osteosarcoma after surgery
and only combined the Coxmodel and nomogram. In our study,
we used the TNM group consisting of three variables (T cate-
gory, N category, and M category) which is more detailed than
the AJCC stage. Third, we did a sensitivity analysis by setting
samevariables group. In the group, the includedvariables of the
ST, RSF, and GBMmodels were same as in the Coxmodel. It had
a similar result to multivariable group, which avoided the bias
caused by different variables in different models.
There are still some limitations in this study. First, the variables
included in this study are limited. There are some studies
that demonstrated that some variables (such as gene-based
signature, radiomics, pathological fracture, etc.) could also
influence the survival in osteosarcoma [43–48]. In future
research, we will try to incorporate these factors into the
models. Second, the consistency of calibration curves was
not high, which may be due to the insufficient sample size
of osteosarcoma as a rare cancer. Efforts will be made to
solve the problem of low consistency. Third, we included only
three machine learning methods to compare with the Cox
model. Currently, there are some machine learning or deep
learning models based on biomedical images that have been
applied in the diagosis of osteosarcoma [46–48]. In the future,
we will explore whether these models and biomedical image
variables can be used to develop survival prognostic models for
osteosarcoma. In addition, we will try to compare more models
(such as support vector machine, artificial neural network,
Xgboost, deep learning, etc.) to develop a more comprehensive
and better prediction model.

Conclusion
The multivariable group was superior to the TNM group.
Among the four prognosis models, the Cox and RSF models
performed better than the ST and GBMmodels. RSF model can
be used as a non-parametric alternative to the Cox model. The
nomogram based on the Cox model in development dataset of
the multivariable group can provide reference for clinicians
to formulate specific therapeutic decisions and allocate health
resources reasonably forosteosarcomapatientsboth inAmerica
and in China.
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