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R E S E A R C H A R T I C L E

Leveraging artificial intelligence to identify high-risk
patients for postoperative sore throat: An
observational study
Qiangqiang Zhou 1, Xiaoya Liu 2, Huifang Yun 1, Yahong Zhao 1, Kun Shu 1, Yong Chen 1∗ , and Song Chen 3∗

Postoperative sore throat (POST) is a prevalent complication after general anesthesia and targeting high-risk patients helps in its
prevention. This study developed and validated a machine learning model to predict POST. A total number of 834 patients who
underwent general anesthesia with endotracheal intubation were included in this study. Data from a cohort of 685 patients was used
for model development and validation, while a cohort of 149 patients served for external validation. The prediction performance of
random forest (RF), neural network (NN), and extreme gradient boosting (XGBoost) models was compared using comprehensive
performance metrics. The Local Interpretable Model-Agnostic Explanations (LIME) methods elucidated the best-performing model.
POST incidences across training, validation, and testing cohorts were 41.7%, 38.4%, and 36.2%, respectively. Five predictors were age,
sex, endotracheal tube cuff pressure, endotracheal tube insertion depth, and the time interval between extubation and the first
drinking of water after extubation. After incorporating these variables, the NN model demonstrated superior generalization capabilities
in predicting POST when compared to the XGBoost and RF models in external validation, achieving an area under the receiver operating
characteristic curve (AUROC) of 0.81 (95% CI 0.74–0.89) and a precision–recall curve (AUPRC) of 0.77 (95% CI 0.66–0.86). The model
also showed good calibration and clinical usage values. The NN model outperforms the XGBoost and RF models in predicting POST, with
potential applications in the healthcare industry for reducing the incidence of this common postoperative complication.
Keywords: Random forest (RF), neural network (NN), extreme gradient boosting (XGBoost), postoperative sore throat (POST).

Introduction
Around 313 million surgeries are annually performed world-
wide, with the majority of patients undergoing general anes-
thesia with an endotracheal tube [1]. Postoperative sore throat
(POST), described as pain or discomfort in the larynx or phar-
ynx during the postoperative period [2], is a frequent compli-
cation that arises following general anesthesia with tracheal
intubation, with an incidence between 19% and 62% [3, 4].
Though POST often resolves independently, it can heighten
patient dissatisfaction, increase analgesic use, and elevate
healthcare costs [2, 5]. Moreover, POST may interfere with
the patient’s ability to eat and drink, potentially leading to
dehydration, malnutrition, and delayed recovery [6, 7]. In
more severe cases, it may exacerbate pre-existing respiratory
issues, posing additional challenges for patient management.
Thus, it is crucial to develop strategies for the prevention
and management of POST to improve the overall patient
experience.

Machine learning showcases significant potential in predict-
ing medical outcomes and complications, aiding clinicians in

making informed decisions, and enhancing patient care [8–10].
The development of an accurate and reliable prediction model
for POST could enable healthcare professionals to identify
patients at high risk of experiencing this complication, allow-
ing for the implementation of targeted preventive measures
and interventions. Recent advancements in machine learn-
ing techniques, from traditional linear models to advanced
deep learning architectures, have shown the ability to handle
large, heterogeneous datasets and capture intricate relation-
ships among variables that may not be apparent using conven-
tional statistical methods [11–13].

The objective of this study was to develop and validate a
machine learning-driven prediction model for POST using a
diverse set of patient characteristics and perioperative factors.
We aimed to compare the performance of various machine
learning algorithms in terms of their predictive accuracy, gen-
eralizability, and clinical utility. Furthermore, we evaluated the
performance of our model both internally, using a validation
cohort from the same institution, and externally, through its
application on an independent dataset from another hospital.
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Ultimately, we seek to provide a valuable tool for clinicians that
can assist in the early identification of patients at risk for POST
and facilitate the implementation of targeted preventive strate-
gies to reduce the incidence of this common and unpleasant
postoperative complication.

Materials and methods
Study design
We retrospectively analyzed the medical records of patients
admitted to the Affiliated Changzhou Second People’s Hospital
of Nanjing Medical University (Jiangsu, China) or the Third
Affiliated Hospital of Soochow University (Jiangsu, China). All
data were extracted by experienced abstractors, who were
blinded to the study hypothesis. To ensure the study’s quality,
we adhered to the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) guidelines [14].

Patients
We collected data from a series of 961 consecutive adult patients
(≥ 18 years) who had an American Society of Anesthesiolo-
gists (ASA) physical status ranging from 1 to 3. These patients
underwent general anesthesia with endotracheal intubation
at either the Affiliated Changzhou Second People’s Hospital
of Nanjing Medical University or the Third Affiliated Hospi-
tal of Soochow University between September 1, 2021, and
May 31, 2022. Exclusions were made for patients who: (1) suf-
fered from a mental disorder; (2) had a recent upper respira-
tory tract infection; (3) underwent more than one intubation
attempt; (4) were transferred to the intensive care unit (ICU)
with endotracheal intubation after the operation; or (5) were
lost to follow-up.

For our training dataset, we reviewed patient records
from the 2021 electronic medical database of the Affiliated
Changzhou Second People’s Hospital of Nanjing Medical Uni-
versity. The remaining patients from this hospital comprised
a validation cohort. For external validation of our prediction
model, we retrospectively extracted data from 149 patients
at the Third Affiliated Hospital of Soochow University, from
September 1, 2021 to December 30, 2021, ensuring they met the
specified inclusion and exclusion criteria.

Data collection and definition of the outcome
All data were collected by trained research personnel using
a standardized data collection form. Data collection encom-
passed patient demographics, medical history, and pertinent
clinical information, such as age, sex, body mass index (BMI),
medical conditions (hypertension, diabetes mellitus, chronic
gastritis, cancer, coronary heart disease, cerebral infarction,
asthma, hyperlipidemia, and smoking history), clinical data,
such as ASA status, pneumoperitoneum, surgical position
(either supine or non-supine, with non-supine encompassing
prone and lateral positions), gastric catheterization, anticholin-
ergic drug use, steroid use (dexamethasone or betamethasone),
surgical site (thorax/abdomen or extremities), and endotra-
cheal tube cuff pressure (ETCP) at surgery’s end, measured
using the pressure gauge (Hi-Lo Hand Pressure Gauge, VBM
Medizintechnik, GmbH, Germany).

Endotracheal tube insertion depth (ETID) denotes the dis-
tance from the endotracheal tube’s tip to the incisors or lips,
serving as a reference for correct placement within the trachea,
thus ensuring that the tube cuff lies below the vocal cords but
above the trachea’s bifurcation into the bronchi. Proper ETID
recording is vital to prevent complications, such as uninten-
tional extubation or bronchial intubation.

Other collected data included the duration of endotra-
cheal tube placement (DOETP), duration of water deprivation
(DOWD), and the time interval between extubation and the first
drinking water after extubation (TIBEATFDWAE).

The variables were selected based on a combination of fac-
tors. Firstly, prior studies identified these variables as clinically
significant predictors of the outcome of interest [4, 15, 16]. Their
importance has been consistently emphasized in prior research,
making them pivotal for our study. Secondly, our data analysis
indicated that these variables were consistently available across
our dataset. This ensures a comprehensive analysis without the
challenge of significant missing data, enhancing the robustness
of our results. Lastly, clinical experts in the domain validated
the significance and pertinence of each variable for our study.

The outcome of this study was the presence of POST. It
was characterized as patients experiencing any of the following
symptoms: dryness and discomfort in the oropharynx with-
out voice changes; sore throat with mild hoarseness; obvi-
ous sore throat accompanied by hoarseness and other severe
changes; or symptoms too severe to speak. Assessments were
conducted on the first postoperative morning (roughly 12–24 h
post-extubation) using the POST questionnaire, referencing
methods previously detailed [15, 16]. The POST grading was as
follows: rating of 0 implied absence of sore throat; level 1, mild
sore throat (complained of sore throat only when asked); level 2,
moderate sore throat (self-reported sore throat); and level 3,
severe sore throat (pain and discomfort in the pharynx that
cause hoarseness or vocal change).

Feature selection
To develop the POST prediction model using the training cohort,
we employed a rigorous variable selection approach that pre-
vented data leakage. We began by using a pairwise Pearson
correlation matrix to check clinical variables for collinear-
ity, setting a pairwise correlation threshold of r > 0.8. From
collinear variables, the most clinically accessible were cho-
sen for subsequent analysis. Subsequently, we utilized both
the Boruta algorithm [17] and the Least Absolute Shrinkage
and Selection Operator (LASSO) algorithm [18] in a two-step
process.

The Boruta algorithm, a feature selection technique rooted
in random forests (RFs), iteratively assesses the significance of
each variable. It does this by comparing its importance to that
of its randomly permutated counterparts, thus allowing for the
identification of truly relevant predictors by eliminating vari-
ables with importance levels comparable to random noise [17].
After applying the Boruta algorithm, a set of significant predic-
tors was obtained.

Next, the LASSO algorithm was employed for additional
variable selection. LASSO operates as a regularization method,
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performing simultaneous variable selection and coefficient
determination. It places a constraint on the sum of the absolute
values of the model parameters. As a result, certain coefficients
are diminished to zero, effectively excluding them from the ulti-
mate model [18]. This step produced another set of significant
predictors.

In our final selection, we considered only predictors identi-
fied by both the Boruta and LASSO algorithms. This intersec-
tion ensured the incorporation of the most relevant and robust
variables in the development of our POST prediction model.
This combined approach aimed to increase the model’s accuracy
and generalizability while reducing the risk of overfitting or
including irrelevant predictors.

Model development and validation
We utilized three machine learning classifiers (extreme gra-
dient boosting [XGBoost], RF, and neural network [NN]) to
construct predictive models for POST. These algorithms have
been explained elsewhere in detail [19, 20]. A brief summary is
presented below.

Extreme gradient boosting (XGBoost)

XGBoost is a sophisticated implementation of the gradient
boosting algorithm, optimized for speed and performance. The
algorithm works by iteratively adding learners (typically deci-
sion trees) to a model, where each new tree corrects errors made
by the previously trained one. Key hyperparameters include
the learning rate, maximum depth of the tree, and the number
of trees (boosting rounds). We chose XGBoost for our study
due to its adeptness at managing sizable datasets and its estab-
lished excellence across various prediction tasks. Furthermore,
XGBoost offers several advantages like handling missing data,
built-in cross-validation, and robustness to overfitting, making
it a preferred choice for our analysis [19].

Random forest (RF)

Like the XGBoost, RF is an ensemble learning method that oper-
ates by constructing multiple decision trees during training
and outputs the class that is the mode of the classes of the
individual trees for classification problems. Key hyperparam-
eters include the number of trees and maximum depth of the
trees [20].

Neural network (NN)

The NNs, inspired by the general framework of neurons and
neuronal circuitry of the human brain, are a set of algo-
rithms designed to facilitate the passage of information from
input nodes to hidden layers, thus optimizing the weights and
mapping between input and output layers. NNs were chosen
for their ability to model complex non-linear relationships
and have demonstrated exceptional performance in numerous
tasks. Key hyperparameters for NNs include the number of
layers, the number of neurons, activation functions, and among
others, the learning rate [20].

To ensure consistency, each model incorporated identical
input variables. Subsequently, grid and random hyperparam-
eter searches were employed to ascertain optimal hyperparam-
eters for each model within the training data, utilizing the area

under the receiver operating characteristic curve (AUROC) as
the primary optimization metric. Upon concluding this process,
we assessed model performance using a range of metrics: the
area under the precision–recall curve (AUPRC), AUROC, cali-
bration curve, Brier score, and Log Loss. Additionally, we calcu-
lated accuracy, sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV). The AUROC and
AUPRC offered insights into the model’s overall predictive capa-
bility. The calibration curve, Brier score, and Log Loss were uti-
lized to gauge the calibration, i.e., the reliability and precision
of the predictions. Meanwhile, measures like sensitivity, speci-
ficity, PPV, and NPV provided a detailed view of each model’s
predictive performance. Complementing the above metrics,
decision curve analysis (DCA) [21] was conducted to quan-
tify the net benefit at different threshold probabilities, eval-
uating the models’ utility in decision making. Finally, Local
Interpretable Model-Agnostic Explanations (LIME) [22] facil-
itated the provision of consistent and locally accurate val-
ues for each variable within the best-performing prediction
model, further enhancing our understanding of the models’
performance.

Feature importance
To pinpoint the primary determinant of POST within our
patient cohort, we evaluated the significance of each feature in
the models using permutation feature importance. This method
quantifies the significance of individual features by observing
the change in the model’s prediction error upon permuting
their values. A feature gains prominence when its permuta-
tion diminishes the model’s performance, indicating that the
model heavily relies on that specific feature for precise pre-
diction. The importance of a variable within machine learning
algorithms, such as XGBoost, RF, and NN models, is ascer-
tained through various factors depending on the algorithm
employed. As relative importance does not adhere to a consis-
tent scale, we report the findings using scaled importance. This
approach recalibrates the relative importance of a variable in
relation to the feature possessing the highest relative impor-
tance value, ensuring that the plots are easily interpretable and
comparable.

Sample size calculation
In order to circumvent overfitting and secure enhanced preci-
sion in prognostic models, a sufficient sample size is impera-
tive for the construction of predictive frameworks. We use a
sample size calculated as n = ( 1.96

δ

)2
φ (1 − φ), where φ is the

expected outcome ratio (φ = 0.40) and δ is the set margin of
error (δ = 0.05) [23]. As dictated by this formula, the minimal
sample capacity for the training set employed in the model’s
development amounts to 369 participants. The training popu-
lation is obviously sufficient for model development.

Ethical statement
The study protocol was approved by the Institutional Review
Boards at the Affiliated Changzhou Second People’s Hospital
of Nanjing Medical University (approval number: [KY204-01])
and the Third Affiliated Hospital of Soochow University
(approval number: [2023CL036-01]), which waived the need to
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Patients underwent general anesthesia
with endotracheal intubation

(n = 961)

Patients excluded (n = 127):

Patients included in the analyses
(n = 834)

Patients from The
Changzhou Second People’s

Hospital
(n = 685)

Patients from The Third
Affilated

Hospital of Soochow University
(n = 149)

Training cohort
(n = 487)

Validation cohort
(n = 198)

Testing cohort
(n = 149)

Mental disorders (n = 21)
Transferred to ICU with endotracheal intubation
after operation (n = 15)
Recent  upper respiratory tract infection (n = 36)
Intubation attempts more than once (n = 5)
Loss to follow-up (n = 50)

• 
• 

• 
• 
• 

Figure 1. Flow diagram of patients. ICU: Intensive care unit.

obtain patient informed consent. This study was conducted in
accordance with the principles outlined in the Declaration of
Helsinki.

Statistical analysis
Continuous variables were assessed by using the Shapiro–Wilk
test. Those that followed a normal distribution are repre-
sented as the mean ± standard deviation (SD). In contrast,
non-normally distributed data are depicted as the median
with its interquartile range (25th to 75th percentiles). Lev-
ene’s test was employed to ascertain the homogeneity of vari-
ance across groups. For comparisons of continuous variables
between groups, the t-test was applied to data with both nor-
mal distribution and homogeneity of variance. In instances
lacking these attributes, Welch’s t-test was employed. For
non-normally distributed data, differences were assessed using
the Mann–Whitney U test. Categorical data are presented
as counts and percentages. The significance of differences

between groups for categorical variables was determined by the
chi-squared test when expected counts were adequate (greater
than 5) or Fisher’s exact test for scenarios with low expected
counts (less than 5). A two-sided P value less than 0.05 was
considered statistically significant. All analyses were done with
the R software, version 4.1.0.

Results
Patient characteristics and incidence
A total of 961 patients were reviewed and 834 patients were
included in the study after exclusions had been made, as
detailed in Figure 1. These patients were divided into train-
ing (487 patients), validation (198 patients), and external
validation (149 patients) cohorts. Baseline demographics
and perioperative factors across these cohorts are presented
in Table 1. The overall incidence of POST in the study
population was 39.9%. The incidence of POST in the training,
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Table 1. Demographic and clinical data of patients

All (n = 834) Training cohort (n = 487) Validation cohort (n = 198) Testing cohort (n = 149)

Patient characteristics

Age (years) 53 (43, 65) 52 (43, 64) 52 (40, 64) 61 (49, 71)
Male 313 (37.5%) 163 (33.5%) 81 (40.9%) 69 (46.3%)
BMI (kg/m2) 23.4 (21.4, 25.8) 23.0 (21.2, 25.4) 23.9 (21.9, 26.5) 23.5 (21.8, 26.2)

Medical history

Current smoking 105 (12.6%) 57 (11.7%) 37 (18.7%) 11 (7.4%)
Coronary artery disease 12 (1.4%) 9 (1.9%) 1 (0.5%) 2 (1.3%)
Hypertension 216 (25.9%) 126 (25.9%) 52 (26.3%) 38 (25.5%)
Diabetes mellitus 79 (9.5%) 44 (9.0%) 21 (10.6%) 14 (9.4%)
Hyperlipidemia 8 (1.0%) 5 (1.0%) 2 (1.0%) 1 (0.7%)
Chronic gastritis 3 (0.4%) 3 (0.6%) 0 (0.0%) 0 (0.0%)
Cerebral infarction 12 (1.4%) 5 (1.0%) 2 (1.0%) 5 (3.4%)
Asthma 1 (0.1%) 1 (0.2%) 0 (0.0%) 0 (0.0%)
Cancer 31 (3.7%) 18 (3.7%) 4 (2.0%) 9 (6.0%)

Procedural characteristics

DOWD (hours) 13.8 (11.7, 16.2) 14.5 (11.8, 16.3) 12.3 (10.7, 15.4) 13.8 (11.8, 16.0)
ETID (cm) 22 (21, 23) 22 (21, 23) 22 (22, 23) 21 (21, 23)
ETCP (mmHg) 56 (40, 75) 50 (34, 75) 60 (50, 78) 60 (45, 72)
DOETP (hours) 1.9 (1.3, 2.8) 1.8 (1.3, 2.6) 1.8 (1.2, 2.8) 2.2 (1.6, 2.9)
TIBEATFDWAE (hours) 6.7 (3.0, 15.0) 6.8 (3.2, 15.0) 5.2 (2.4, 15.1) 7.1 (4.6, 14.7)

ASA status

I-II 786 (94.2%) 471 (96.7%) 191 (96.5%) 124 (83.2%)
III 48 (5.76%) 16 (3.3%) 7 (3.5%) 25 (16.8%)

Position

Supine 466 (55.9%) 243 (49.9%) 116 (58.6%) 107 (71.8%)
Non-supine 368 (44.1%) 244 (50.1%) 82 (41.4%) 42 (28.2%)

Surgical site

Thorax or abdomen 721 (86.5%) 436 (89.5%) 160 (80.8%) 125 (83.9%)
Extremities 113 (13.5%) 51 (10.5%) 38 (19.2%) 24 (16.1%)

Pneumoperitoneum 346 (41.5%) 211 (43.3%) 75 (37.9%) 60 (40.3%)

Gastric catheterization 16 (1.92%) 4 (0.8%) 1 (0.5%) 11 (7.4%)

Anticholinergic drug usage 198 (23.7%) 79 (16.2%) 92 (46.5%) 27 (18.1%)

Glucocorticoid usage 712 (85.4%) 396 (81.3%) 176 (88.9%) 140 (94.0%)

Values are presented as the median (interquartile range) or number (percentage). BMI: Body mass index; DOWD: Duration of water
deprivation; ETID: Endotracheal tube insertion depth; ETCP: Endotracheal tube cuff pressure; DOETP: Duration of endotracheal tube
placement; TIBEATFDWAE: Time interval between extubation and the first drinking water after extubation; ASA: American Society of
Anaesthesiologists.

validation, and testing cohorts were 41.7%, 38.4 %, and 36.2%,
respectively.

Comparative analysis of POST vs non-POST patients
Differences between patients with and without POST were
observed, particularly for age, sex, smoking status, blood pres-
sure, ETCP, and TIBEATFDWAE. Detailed comparisons are
available in Table 2.

Feature selection
All continuous variables showed no pairwise Pear-
son correlation greater than 0.8 (Figure 2). Using the
Boruta and LASSO algorithms, five significant predic-
tors for POST were identified: age, sex, ETCP, ETID, and
TIBEATFDWAE (Figure 2). The selected features were
incorporated into the three machine learning classifiers

(XGBoost, RF, and NN) to develop predictive models for
POST.

Hyperparameter tuning
The process of grid and random hyperparameter searching for
RF, NN, and XGBoost algorithms is illustrated in Figures 2F-2I
and Figures S1 and S2. The optimal mtry and trees are 1 and 22,
respectively, for RF models. The optimal neural units, decay,
and iterations are 3, 0.1, and 76, respectively, for NN models.
The optimal nrounds, max_depth, eta, gamma, colsample_bytree,
min_child_weight, and subsample were 1, 9, 0.1, 1, 0.8, 10, and
0.9, respectively.

Model development, validation, and performance
Using the identified predictors and optimal hyperparameters,
three machine learning models (RF, NN, and XGBoost) were
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Figure 2. Selection of variables and model hyperparameters. (A) Spearman or Pearson correlation matrix of continuous clinical variables. “×” means
that the P value is less than 0.05, which is not significant. (B) Variable selection by using the Boruta algorithm. (C) Five variables were codetermined by the
Boruta and Lasso algorithms. (D and E) Variable selection by using the Lasso regression. (F and G) Determination of optimal hyperparameters for the random
forest model. (H and I) Determination of optimal hyperparameters for the neural network model. ETCP: Endotracheal tube cuff pressure; ETID: Endotracheal
tube insertion depth; TIBEATFDWAE: Time interval between extubation and the first drinking water after extubation; DOETP: Duration of endotracheal tube
placement; BMI: Body mass index; DOWD: Duration of water deprivation; LASSO: Least absolute shrinkage and selection operator.

developed and their performances were evaluated. AUROC,
AUPRC, Brier scores, and Log Loss metrics were calculated for
each model across the training, validation, and external vali-
dation cohorts. Figure 3 provides a visual representation, while
Figure 4 and Table 3 offer detailed performance metrics.

Clinical utility
DCA indicated varying net benefits of the models across dif-
ferent cohorts, suggesting specific clinical utility scenarios for
each model (Figure 3). In the training cohort, the DCA showed
that the XGBoost’s net benefits for predicting POST exceeded
those of RF, NN, and the strategies of treating all or none of
the patients when the threshold probability surpassed 27%.
However, the RF and NN models showed higher net benefits
compared to the XGBoost model in the validation cohort. In the
testing cohort, the NN model was superior to the other two,
having net benefits ranging from 60% to 80%.

Feature importance
Permutation feature importance analysis revealed that the
top two important features were TIBEATFDWAE and ETCP in
the RF and XGBoost models. Somewhat differently, the two

most important predictors in the NN model were sex and
TIBEATFDWAE (Figure 5). This indicates that the TIBEATFD-
WAE variable may have significant ramifications for the
POST.

Model explainability
Using LIME, we clarified the predictions of the NN model,
highlighting how different features influence predictions. We
detailed four representative cases to illustrate the interplay of
factors in determining POST risk (Figure 6). In case 1, the figure
indicated a moderate probability of POST at 66%. All features of
this patient were favorable. This might suggest that a younger
female patient with a higher ETCP, an extended TIBEATFD-
WAE, and an improper ETID is more likely to have a POST.
For case 2, the NN model predicted a POST probability of only
16%. The interpretative algorithm indicated factors like older
age and male gender, coupled with a shorter TIBEATFDWAE
lean toward a non-POST outcome. However, an inappropriate
ETID and a higher ETCP were negative prognostic factors for
this result. Likewise, case 3 had a similar low POST predic-
tion at 15%. Factors, such as age, male sex, a lower ETCP, a
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Figure 3. AUROCs, AUPRCs, calibration plots, and DCA for RF, NN, and XGBoost in the three cohorts. AUROC: Area under the receiver operating
characteristic curve; AUPRC: Area under the precision–recall curve; DCA: Decision curve analysis; RF: Random forest; NN: Neural network; XGBoost: Extreme
gradient boosting; TPR: True predictive rate; FPR: False predictive rate.

proper ETID, and a shorter TIBEATFDWAE all acted as protec-
tive attributes, suggesting a non-POST outcome. For case 4, the
model assigned a POST probability of 55%. Favorable charac-
teristics, such as female sex, young age, and a shallower ETID
tended the algorithm toward POST; however, a lower ETCP and
a shorter TIBEATFDWAE were both negative prognostic factors
for POST.

Discussion
Principal findings
This study aimed to develop and evaluate machine learning
models—RF, NN, and XGBoost—for predicting POST in patients
undergoing surgery with endotracheal intubation. To the best

of our knowledge, this may be the first predictive model capable
of assessing the risk of POST for patients intubated after general
anesthesia. Our findings indicated that the XGBoost model out-
performed the RF and NN models in the training cohort. How-
ever, in the validation cohort, the RF and NN models exhibited
higher net benefits than the XGBoost model. In the external
testing cohort, the NN model surpassed the other two within
a particular range of net benefits. This study offers valuable
insights into POST prediction, enriching existing knowledge
and serving as a foundation for subsequent research and poten-
tial clinical applications.

Our prediction models identified five crucial predictors for
POST: age, sex, ETCP, ETID, and TIBEATFDWAE. These predic-
tors are acknowledged risk factors for POST in the literature.
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Figure 4. Confusion matrix plots for RF, NN, and XGBoost models in the three cohorts. RF: Random forest; NN: Neural network; XGBoost: Extreme
gradient boosting; POST: Postoperative sore throat.

Age and sex are well recognized as demographic risk factors
for POST, with younger patients and females having a higher
risk [24–26]. Consistent with previous research, ETCP emerged
as a significant predictor for POST [27]. Generally, after a suc-
cessful tracheal intubation, the anesthesiologist inflates the
tracheal tube cuff to ensure optimal ventilation and minimize
anesthetic leakage. The ETCP often depends on the anesthetist’s
expertise and manual balloon palpation, typically surpass-
ing the recommended ETCP of 15–25 mmHg [28, 29]. Exces-
sive ETCP can hamper the blood flow to the tracheal mucosa,
leading to issues like ischemia, ulceration, and necrosis of
the tracheal mucosa, hence causing throat discomfort [27].
Consistent with other reports, the ETID is another significant

predictor for POST [4, 24, 27]. Biro et al. [24] observed that
the incidence of POST increased with increasing duration of
endotracheal intubation. The TIBEATFDWAE aligns with exist-
ing studies linking the DOWD to POST incidence [30–32]. Tra-
ditionally, patients receiving general anesthesia were allowed
to drink water about 4–6 h after awakening from anesthe-
sia (for non-gastrointestinal surgery) to ensure postopera-
tive safety and prevent coughing, vomiting, and aspiration
caused by oral hydration [33]. However, with the advent
of Enhanced Recovery after Surgery concepts, many stud-
ies validated the benefits of early oral hydration (roughly an
hour post-anesthesia awakening), citing reduced thirst and
oropharyngeal discomfort [30–32]. In addition, pre-anesthesia
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Figure 5. Relative importance radar plots of five predictors in RF, NN, and XGBoost models: (A) RF; (B) NN; (C) XGBoost. RF: Random forest;
NN: Neural network; XGBoost: Extreme gradient boosting; TIBEATFDWAE: Time interval between extubation and the first drinking water after extubation;
ETID: Endotracheal tube insertion depth; ETCP: Endotracheal tube cuff pressure.

Table 2. Comparison of baseline characteristics between patients with
and without POST

POST (n = 333) Non-POST (n = 501) P value

Patient characteristics

Age (years) 50 (40, 61) 57 (45, 68) <0.001
Male 72 (21.6%) 241 (48.1%) <0.001
BMI (kg/m2) 23.4 (21.5, 25.6) 23.3 (21.4, 26.0) 0.993

Medical history

Current smoking 82 (16.4%) 23 (6.9%) <0.001
Coronary artery disease 7 (2.1%) 5 (1.0%) 0.238
Hypertension 64 (19.2%) 152 (30.3%) <0.001
Diabetes mellitus 23 (6.9%) 56 (11.2%) 0.052
Hyperlipidemia 2 (0.6%) 6 (1.2%) 0.487
Chronic gastritis 1 (0.3%) 2 (0.4%) 1.000
Cerebral infarction 5 (1.5%) 7 (1.4%) 1.000
Asthma 0 (0.0%) 1 (0.2%) 1.000
Cancer 8 (2.4%) 23 (4.6%) 0.147

Procedural characteristics

DOWD (hours) 13.8 (11.7, 10.6) 13.8 (11.6, 16.2) 0.901
ETID (cm) 21 (21, 23) 22 (21, 23) <0.001
ETCP (mmHg) 60 (42, 82) 50 (38, 70) <0.001
DOETP (hours) 1.8 (1.3, 2.8) 1.9 (1.3, 2.8) 0.958
TIBEATFDWAE (hours) 8.7 (4.0, 16.2) 5.8 (2.8, 14.4) <0.001

ASA status 1.000

I-II 314 (94.3%) 472 (94.2%)
III 19 (5.7%) 29 (5.8%)

Position 0.528

Supine 191 (59.4%) 275 (54.9%)
Non-supine 142 (42.6%) 226 (45.1%)

Surgical site 0.589

Thorax or abdomen 291 (87.4%) 430 (85.8%)
Extremities 42 (12.6%) 71 (14.2%)

Values are presented as the median (interquartile range) or number (per-
centage). P values between groups were assessed by the Chi-square, Fisher’s
exact, and Mann–Whitney U tests. Bold indicates statistical significance.
POST: Postoperative sore throat; BMI: Body mass index; DOWD: Duration of
water deprivation; ETID: Endotracheal tube insertion depth; ETCP: Endotra-
cheal tube cuff pressure; DOETP: Duration of endotracheal tube placement;
TIBEATFDWAE: Time interval between extubation and the first drinking
water after extubation; ASA: American Society of Anaesthesiologists.

gargling with licorice may alleviate POST [34, 35]. Our findings
are consistent with these previous studies, emphasizing the
association between the time interval from extubation to first
water intake and POST incidence.

In the training cohort, the XGBoost model achieved the high-
est AUROC and AUPRC values, indicating superior predictive
performance compared to RF and NN models. The model also
demonstrated good calibration and lower Brier scores and Log
Loss values, suggesting better prediction accuracy. However, in
the validation cohort, the RF and NN models showed higher net
benefits compared to the XGBoost model. The discrepancies in
performance between the training and validation cohorts could
stem from the XGBoost model’s overfitting. Overfitting occurs
when a model performs well on the training data but fails to
generalize to unseen data [36].

The NN model demonstrated superior performance within
a certain range of net benefits in the external cohort. This sug-
gests that the NN model may be more suitable for clinical use
in specific scenarios. The DCA performed in this study helps
determine the clinical usefulness of the models by quantify-
ing the net benefits at different threshold probabilities. Such
DCA findings can assist clinicians in selecting the ideal model
based on the precise clinical setting and their preferred risk
threshold [21].

Strengths
This study represents a series of significant advancements in
the ongoing efforts to predict and alleviate POST. Uniquely,
it pioneers the utilization of machine learning algorithms for
POST prediction, moving beyond the traditional statistical
methods that have predominated prior research. While earlier
studies have illuminated various POST predictors, our work
extends the scope by exploring less conventional variables,
such as the TIBEATFDWAE. The inclusion of both internal and
external validation cohorts in our analysis not only underscores
the robustness of our findings but also extends an invitation
for their broader applicability across varied clinical settings.
Clinically, the derived predictive models stand to transform
patient care by empowering clinicians with insights to iden-
tify and proactively manage individuals at an elevated risk
for POST, aiming for enhanced postoperative patient comfort
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Table 3. Performance metrics for POST prediction models

Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

Training cohort

Random forest 0.83 (0.79 – 0.86) 0.94 (0.89 – 0.97) 0.78 (0.73 – 0.83) 0.75 (0.69 – 0.85) 0.94 (0.91 – 0.96)
Neural network 0.67 (0.63 – 0.72) 0.69 (0.63 – 0.76) 0.66 (0.60 – 0.71) 0.59 (0.53 – 0.67) 0.75 (0.69 – 0.80)
XGBoost 0.89 (0.86 – 0.92) 0.81 (0.75 – 0.86) 0.96 (0.93 – 0.98) 0.93 (0.89 – 0.95) 0.88 (0.83 – 0.93)

Validation cohort

Random forest 0.67 (0.60 – 0.74) 0.71 (0.60 – 0.81) 0.63 (0.54 – 0.72) 0.55 (0.45 – 0.67) 0.78 (0.68 – 0.84)
Neural network 0.66 (0.59 – 0.73) 0.72 (0.61 – 0.82) 0.69 (0.60 – 0.77) 0.59 (0.42 – 0.72) 0.80 (0.70 – 0.86)
XGBoost 0.61 (0.54 – 0.68) 0.63 (0.51 – 0.74) 0.59 (0.50 – 0.68) 0.49 (0.40 – 0.61) 0.72 (0.61 – 0.79)

Testing cohort

Random forest 0.78 (0.70 – 0.84) 0.67 (0.53 – 0.79) 0.84 (0.75 – 0.91) 0.71 (0.58 – 0.82) 0.82 (0.71 – 0.89)
Neural network 0.78 (0.70 – 0.84) 0.76 (0.62 – 0.87) 0.77 (0.67 – 0.85) 0.65 (0.53 – 0.79) 0.85 (0.75 – 0.90)
XGBoost 0.71 (0.64 – 0.79) 0.89 (0.77 – 0.96) 0.56 (0.45 – 0.66) 0.53 (0.43 – 0.77) 0.90 (0.79 – 0.93)

Bold indicates statistical significance. PPV: Positive predictive value; NPV: Negative predictive value; XGBoost: Extreme gradient
boosting; POST: Postoperative sore throat.

Figure 6. Interpretation of the neural network with a local interpretable model explainer in four cases. Two sore throat patients (A, D) and two normal
patients (B, C) are illustrated. Features with a blue bar favor the outcome, and those with a red bar contradict the outcome. The x-axis shows how much each
feature added or subtracted to the final probability value for the patient (i.e., a feature with a weight of 0.3 is equivalent to a 30% change in the probability
of the outcome). ETCP: Endotracheal tube cuff pressure; ETID: Endotracheal tube insertion depth; TIBEATFDWAE: Time interval between extubation and
the first drinking water after extubation.

and satisfaction. Through this innovative approach, we aspire
for our study to serve as a cornerstone for future research,
fostering further exploration and refinement of machine-
learning-based predictive models in the realm of postoperative
complications.

Limitations
Several limitations of this study should be considered. First,
the sample size may be insufficient for thorough validation
of the models, possibly affecting the generalizability of the
findings. Furthermore, data were collected retrospectively,
which could introduce potential biases and confounders.

Future studies with larger sample sizes and prospective data
collection can help address these limitations and further
validate the predictive performance of the models. More-
over, the study did not consider certain factors that may
influence POST, such as the use of different airway devices,
lubrication, and the anesthetist’s experience. Including these
factors in future research may enhance the predictive capa-
bilities of the models. Lastly, the study did not assess the
impact of implementing the models in clinical practice on
patient outcomes and resource utilization. Future research
should investigate the potential benefits of incorporating
these models in clinical decision making, such as the
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reduction of POST incidence and the optimization of resource
allocation.

Conclusion
The present study demonstrates that the NN model outperforms
the XGBoost and RF models in predicting POST. This supe-
rior model has the potential to aid healthcare professionals in
identifying patients at high risk for POST, thereby facilitating
the implementation of targeted preventive strategies and ulti-
mately reducing the incidence of this common and unpleasant
postoperative complication.
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Supplemental data

Figure S1. Grid search method to determine hyperparameters of XGBoost models. XGBoost: Extreme gradient boosting.

Figure S2. Grid search method to determine best rounds of XGBoost models. XGBoost: Extreme gradient boosting.
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