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R E S E A R C H A R T I C L E

A novel machine learning-derived four-gene signature
predicts STEMI and post-STEMI heart failure
Jialu Yao 1,2#, Yujia Zhou 3,4#, Zhichao Yao 5#, Ye Meng 3,4, Wangjianfei Yu 3,4, Xinyu Yang 3,4, Dayong Zhou 5∗ ,
Xiaoqin Yang 2,3,4∗ , and Yafeng Zhou 2∗

High mortality and morbidity rates associated with ST-elevation myocardial infarction (STEMI) and post-STEMI heart failure (HF)
necessitate proper risk stratification for coronary artery disease (CAD). A prediction model that combines specificity and convenience is
highly required. This study aimed to design a monocyte-based gene assay for predicting STEMI and post-STEMI HF. A total of
1956 monocyte expression profiles and corresponding clinical data were integrated from multiple sources. Meta-results were obtained
through the weighted gene co-expression network analysis (WGCNA) and differential analysis to identify characteristic genes for
STEMI. Machine learning models based on the decision tree (DT), support vector machine (SVM), and random forest (RF) algorithms
were trained and validated. Five genes overlapped and were subjected to the model proposal. The discriminative performance of the
DT model outperformed the other two methods. The established four-gene panel (human leukocyte antigen-J [HLA-J], complement
factor properdin [CFP], Syntaxin-11 [STX11], and nuclear transcription factor Y subunit C [NFYC]) could discriminate STEMI and HF with
an area under the curve (AUC) of 0.86 or above. In the gene set enrichment analysis (GSEA), several cardiac pathogenesis pathways and
cardiovascular disorder signatures showed statistically significant, concordant differences between subjects with high and low
expression levels of the four-gene panel, affirming the validity of the established model. In conclusion, we have developed and
validated a model that offers the hope for accurately predicting the risk of STEMI and HF, leading to optimal risk stratification and
personalized management of CAD, thereby improving individual outcomes.
Keywords: ST-elevation myocardial infarction (STEMI), heart failure (HF), monocyte, machine learning, prediction model.

Introduction
Coronary artery disease (CAD) is the leading cause of death
worldwide, with 85% of cardiovascular deaths attributed to
acute myocardial infarction (MI) and stroke [1]. ST-elevation
myocardial infarction (STEMI) is the most severe type of AMI
that indicates an utterly occlusive coronary artery thrombus,
leading to apoptosis and necrosis of cardiomyocytes, inflam-
mation, and myocardial fibrosis [2]. It is well recognized as
a determinant of morbidity and disability globally [3], cur-
rently accounting for 25%–40% of MI presentations [3–5].
Several large-scale observations in recent decades revealed
reciprocal trends of a progressive increase in heart failure
(HF) incidence that paralleled a decrease in mortality after
MI events [6, 7]. Although percutaneous coronary intervention
(PCI), the current standard treatment for STEMI, has improved
short-term survival rates [8], severe complications associated
with MI, such as HF, can still significantly worsen the prognosis.

Among patients with an MI history, HF triples the total mor-
tality risk and quadruples cardiovascular mortality [9, 10].
This underscores the importance of early STEMI and HF
risk prediction, as well as the value of diligent patient
monitoring.

Although concentrations of plasma brain natriuretic
peptide (BNP)/N-terminal pro-B-type natriuretic peptide
(NT-pro-BNP) are significantly elevated in STEMI patients
and those admitted for adverse outcomes like HF and are
used widely in clinical practice, they have limitations. They
lack specificity and are likely to show similar elevations in
congestive HF, pulmonary disease, atrial fibrillation, renal
disease, and cancer therapy [11, 12]. Unexpectedly, a very low
level was observed in a subset of patients hospitalized for
HF [13]. Therefore, there is still an urgent requirement for
novel objective biological indicators for the early prediction
of STEMI occurrence and the development ofpost-STEMI HF.
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Figure 1. Workflow of the study. WGCNA: Weighted gene co-expression network analysis; STEMI: ST-elevation myocardial infarction; CAD: Coronary
artery disease; GSVA: Gene set variation analysis; AUC: Area under the curve.

Peripheral blood mononuclear cells (PBMCs), mainly mono-
cytes, are recruited to the heart from the spleen and partici-
pate in inflammation [14, 15], where they function as crucial
regulators of cardiac remodeling after MI [16]. According to
this, it would be feasible to put forward new proposals for
associating biological traits of PBMCs with STEMI risk and
prognosis.

A rapidly growing body of omics data, comprised of many
scattered studies by individual investigators, is worth min-
ing to open up the possibility of linking specific biomark-
ers to corresponding pathological changes [17]. In this study,
we hypothesized that key biomarker genes were identi-
fied through integrative molecular and clinical data across
multiple monocyte cohorts and gene expression patterns.
We sought to comprehensively evaluate extracted signature
genes embodying STEMI risk. Here, we proposed a machine
learning model based on these transcriptomic characteris-
tics for early risk stratification of STEMI and post-STEMI
HF. This novel blood-based gene panel may serve as an effi-
cient prognostic tool for target-predictive, prevention, and

personalized therapy for patients, cardiologists, and clinical
investigators.

Materials and methods
Overall design
The workflow of this study is shown in Figure 1.

Dataset collection and processing
Totally, five Gene Expression Omnibus (GEO) cohorts
(GSE7638, GSE90074, GSE62646, GSE59867, and GSE56045)
were included for bioinformatics analysis. The basic informa-
tion for these datasets is summarized in Table 1 and Table S1.
The GSE7638 dataset containing 160 samples with comprehen-
sive clinical data was used for weighted gene co-expression net-
work analysis (WGCNA). The GSE90074 and GSE62646 datasets
from patients experiencing CAD and STEMI were used to screen
differentially expressed genes (DEGs). Then, machine learning
algorithms were performed to construct a prediction model
based on the time-course expression data GSE59867. Finally,
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Table 1. Basic information of the dataset included in this study

GSE ID Sample size Microarray platform Usage

WGCNA Differential
analysis

Machine
learning

GSVA GSEA

GSE7638 160 [HG-U133A_2] Affymetrix Human Genome U133A 2.0 √

GSE90074 143 Agilent-014850 Whole Human Genome Microarray 4x44K G4112F √

GSE62646 98 [HuGene-1_0-st] Affymetrix Human Gene 1.0 ST √

GSE59867 353 [HuGene-1_0-st] Affymetrix Human Gene 1.0 ST √

GSE56045 1202 Illumina HumanHT-12 V4.0 expression beadchip √ √

WGCNA: Weighted gene co-expression network analysis; GSVA: Gene set variation analysis; GSEA: Gene set enrichment analysis.

the large-scale transcriptional microarray data GSE56045 with
1202 samples was used for gene set enrichment analysis (GSEA).
The “oligo” (Version 1.56.0) and “limma” (Version 3.48.3)
packages were used in the workflow for processing Agilent,
Illumina, and Affymetrix microarray [18, 19].

For the Agilent two-color microarray experiments
(GSE90074), the raw data were first subjected to background
correction and then “LOESS” within-array normalization,
according to the suggested protocols for linear models to
statistically assess differential expression. The resulting nor-
malized log2 ratio (Cy5 Channel/Cy3 Channel) representing
the test/reference was prepared for subsequent analysis.

For the Illumina single-channel expression beadchip data
from the Multi-Ethnic Study of Atherosclerosis (MESA) project
(GSE56045), the non-normalized matrix was subjected to
“normexp” background correction, then quantile normaliza-
tion, and finally, log2 transformed. The resulting matrix for the
probe signal was prepared for subsequent analysis.

For the Affymetrix single-channel microarray data
(GSE7638, GSE62646, and GSE59867), the CEL format raw
files were annotated with the custom CDF files obtained from
the Brainarray Microarray Lab (http://brainarray.mbni.med.
umich.edu/Brainarray/Database/CustomCDF/, Version 24).
The robust multichip average (RMA) normalization was
performed to yield quantile-normalized signal intensity.
The resulting log2 transformed value representing the
expression level for each gene was prepared for subsequent
analysis.

Weighted gene co-expression network analysis (WGCNA)
WGCNA was performed based on the gene expression pro-
files of GSE7638 and corresponding clinical traits, including
sex, age, collateral flow index, and CAD category (with or
without CAD). Built-in functions of the “WGCNA” package
(Version 1.70-3) were applied to fulfill complete exploratory
data analysis and results visualization [20]. The WGCNA pro-
tocol can be summarized in the following steps. Initially, the
expression matrix was sorted based on the median absolute
deviation (MAD) value of each row (gene), and the top 5000
records were subjected to the subsequent WGCNA analysis.
Then, briefly, a minimum power with R2 > 0.90 was set to

optimize the power (β) for automatic network construction.
The dynamic tree-cut method was implemented for module
(cluster of densely interconnected genes) detection. The min-
imum module size (gene number) was set to 30. The association
between the identified modules with clinical characteristics
was assessed by Pearson’s correlation test. If the P value of the
association was less than 0.01, the null hypothesis was rejected.
Finally, the module membership (MM) score, indicating the
likelihood of the membership of a gene in the corresponding
module, was set at 0.70 to filter out potential false positives.
The narrowed-down list of hub genes was subjected to further
analysis.

Identification of diferentially expressed genes (DEGs) and
downstream analysis
Linear models and the empirical Bayes method were adopted
for the normalized data matrix of GSE90074 and GSE62646 to
assess differential expression statistically. If the P value was less
than 0.01, the null hypothesis was rejected.

The web-based VennDiagram app (http://www.ehbio.com/
test/venn/) was used for the overlap calculation for common
genes. DAVID Analysis Wizard server (https://david.ncifcrf.
gov/) was used to identify significantly enriched gene sets for
DEGs [21]. If the P value was less than 0.05, the null hypothesis
was rejected.

Gene set variation analysis (GSVA) and functional enrichment
Gene set variation analysis (GSVA), a non-parametric and
unsupervised method, was used for estimating the variation
of gene set (gene signature candidates) enrichment through
the samples of the GSE56045 dataset. The “GSVA” package
(Version 1.42.0) was used to implement this operation [22].
Samples were stratified into two subgroups according to the
mean GSVA score. The GSEA Desktop App (Version 4.2.2) was
then used to computationally determine whether an a priori
defined gene set (e.g., KEGG pathway, Gene Ontology Biolog-
ical Process, and Chemical and Genetic Perturbations) shows
statistically significant, concordant differences between the
two subgroups (high GSVA score subgroup vs low GSVA score
subgroup) [23]. If the P value was less than 0.05, the null
hypothesis was rejected.
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Model construction with machine learning technologies
According to the split-sample validation approach, 353 MI and
control samples of GSE59867 were randomly divided accord-
ing to the 1:1 scheme into the model development and internal
validation groups. The 307 PBMC samples of STEMI patients
covered three time points (on the first day of MI, after four–six
days of MI, and one month after MI). In addition, 72 HF pro-
gression and control samples of GSE59867 were used to test the
models. Gene expressions depicted as attributes were input into
machine learning methods, including support vector machine
(SVM), decision tree (DT), and random forest (RF) algorithms to
construct a model for STEMI and HF risk stratification. DT strat-
egy was implemented with the “rpart” Package (Version 4.1.16).
The SVM algorithm was fulfilled with the “e1071” Package
(Version 1.7-9). RF method was carried out with the “random-
Forest” Package (Version 4.7-1) with the following parameters:
ntree = 500 and mtry = 1. Receiver operating characteristic
(ROC) curves were drawn to assess the prognostic value of the
model. Area under the ROC curve (AUC) was calculated to assess
the performance of the proposed model in separating positive
and negative classes. An AUC below 0.75 indicates low dis-
crimination accuracy, one ranging from 0.75 to 0.85 moderate
accuracy, and one greater than 0.85 high accuracy.

Statistical analysis
R language (Version 4.1.3) programs based on Bioconductor
(Version 3.14) software packages were designed to perform all
statistical and bioinformatics analyses.

Results
WGCNA identifies CAD risk factors
The dataset GSE7638 was subjected to WGCNA to identify
feature genes contributing to CAD risk (trait). Module-trait
relationships were statistically analyzed upon completing
the module assignment with the dynamic tree-cut algorithm
(Figure 2A). The correlation coefficient and statistical signifi-
cance of each correlation between coexpressed gene modules
and clinical trait measurements were visualized in a heatmap.
The depth of the shade color coded by the red–white–blue scale
reflected the degree of positive (red) and negative (blue) cor-
relation. As the statistics show, MEblue and MEred modules
were positively associated with CAD risk (Figure 2B). Subse-
quently, 271 hub genes were further filtered with the MM cut-
off of 0.7. Functional annotation analysis (Figure 2C) for these
genes found significant enrichment for gene sets related to
the cardiac disorder, such as apoptotic process, platelet acti-
vation, systolic HF, cardiac muscle contraction, response to
oxidative stress, aldosterone-regulated sodium reabsorption.
Additionally, metabolic processes, including the cellular lipid
metabolic process, lipid biosynthetic process, glucose transport,
and adipocytokine signaling pathway, were also significantly
enriched.

Differential analysis identified monocyte gene signatures for
obstructive CAD and STEMI risk
To identify the risk or protective genes of CAD, we compared the
mRNA expression of 93 obstructive CAD and 50 control samples

retrieved from GSE90074. As shown, 267 genes were signifi-
cantly upregulated, and 301 were downregulated (Figure 3A).
Next, monocyte transcriptomics profiles of 14 stable CAD and
84 STEMI from GSE62646 were obtained and subjected to
comparative analysis. Totally, 3537 upregulated genes and
3489 downregulated genes were identified (Figure 3B). Inter-
section shows that 48 genes were commonly upregulated
in the GSE90074 and GSE62646 datasets (Figure 3C), but no
commonly downregulated genes were found. Further func-
tional annotation (Figure 3D) revealed that these myocardial
disorder factors enriched cardiac pathogenesis pathways
(e.g., JAK-STAT signaling pathway, Ras protein signal trans-
duction, regulation of small GTPase mediated signal transduc-
tion, and positive regulation of GTPase activity) and relevant
functional modules (e.g., apoptosis, platelet activation, cell–cell
adhesion, vascular disease, cells, and molecules involved in
local acute inflammatory response).

Gene features predict myocardial infarct and heart failure risk
To further narrow down the candidate list, the
271 CAD-associated genes identified by WGCNA were inter-
sected with 48 genes commonly upregulated in GSE90074
and GSE62646. Totally, five genes, including human leuko-
cyte antigen-J (HLA-J), complement factor properdin (CFP),
Syntaxin-11 (STX11), Fli-1 proto-oncogene (FLI1), and nuclear
transcription factor Y subunit C (NFYC), were contained within
the intersection outcome (Table 2) and subjected to the model
proposal. ROC plot analysis was used to assess the accuracy of
classifiers for MI risk in the GSE59867 dataset (353 samples).
However, none of the five genes (Figure 4A) could achieve
high classification accuracy (as a rule of thumb, a ROC-AUC
above 0.85). Then, three popular machine-learning strategies
were adopted. To do so, the original dataset of GSE59867 was
subgrouped into learning and validation sets with a 1:1 size ratio
in a standard split-sample validation scheme. As an obvious
result, only the classification by DT technique could yield
an ROC-AUC greater than 0.85 in both learning (Figure 4B)
and validation (Figure 4C) sets. Totally, four genes (HLA-J,
CFP, STX11, and NFYC) constituted this DT prediction model
(Figure S1). In the test for HF risk in GSE59867, 26 samples of HF
collected at three time points (admission, discharge, and after
1 month) vs 46 stable CAD were used. This DT-based classifier
attained an ROC-AUC of 0.86 (Figure 4D). Then, to further
evaluate its performance as present-on-admission prediction,
this DT model was tested in a cohort consisting of nine HF
samples obtained on admission for STEMI and 46 stable CAD. In
this case, the ROC-AUC value was 0.91 (Figure 4E). These results
suggested that this DT model might have substantial potential
for predicting STEMI risk and HF risk after STEMI.

Gene set enrichment analysis (GSEA)
To uncover the underlying biological themes that are different
between subjects with high and low expression levels of the four
genes involved in the DT model, we performed pathway-level
comparative analysis. The 1202 monocyte samples from the
GSE56045 dataset were stratified according to the mean GSVA
score of the four genes. Further, GSEA enrichment results
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showed significant enrichment of gene modules related to
cardiac disorders, including heart contraction (Figure 5A),
acute coronary syndrome (Figure 5B), abnormal cardiac ven-
tricular function (Figure 5C), abnormality of cardiovascular
system electrophysiology (Figure 5D), heart valve morphology
(Figure 5E), cardiac atrium morphology (Figure 5F), connection
of the cardiac segments (Figure 5G), and viral myocarditis
(Figure 5H). In addition, biological processes involved in the
pathogenesis of MI and HF, including hypoxia (Figure 5I),
vasopressin-regulated water reabsorption (Figure 5J), inflam-
mation response (Figure 5K), apoptosis (Figure 5L), and
oxidative stress (Figure 5M) were also enriched. Moreover,
signaling pathways instrumental in myocardial damage or car-
dioprotection, such as JAK-STAT (Figure 5N), Wnt (Figure 5O),
and MAPK (Figure 5P), were overrepresented.

Discussion
Diagnostic strategies should be established to prevent or
detect MI and HF early in high-risk populations. Clinical
prediction, based on mathematical models, is developed

to estimate the probability that a particular disorder is
present or to assess the likelihood that a specific adverse
outcome will occur in the future [24]. Many efforts have been
devoted to developing the biomarker model that stratifies CAD
subjects according to their MI and HF risk. With the steady
development of high-throughput technologies (e.g., microar-
rays, next-generation sequencing, and mass spectrometry),
along with the accelerated accumulation of omics data and
the substantial improvement in statistics and artificial intel-
ligence (e.g., machine learning), several signatures based on
transcriptomics, epigenomics, proteomics, and metabolomics
have been identified assessing MI risk and prognosis [25–30].
However, some studies were plagued by small sample sizes,
low classification accuracy (ROC-AUC less than 0.85), lack of
validation, or even a failure to provide sufficient predictive
information (e.g., statistics from ROC analysis). A recent study
proposed the diagnostic value of a combination of five genes
identified by logistic LASSO regression to discriminate STEMI
patients from controls and nominated two genes as predictive
biomarkers of post-STEMI HF. However, the robustness of this
conclusion could be challenged by the heterogeneity of the
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sample source [25]. Another three-gene model for recognizing
post-acute MI HF [30] suffered from data reuse and lack of
validation, significantly impacting the generalizability. In this
study, the cell-type homogeneity of the included datasets
ensured the representativeness of our four-gene model.
Furthermore, real-world representation was modeled through
access to a diverse range of data sources. Moreover, our model’s
performance was tested in both derivation and validation
groups.

This study presents a strategy for a high-risk monocyte sig-
nature of adverse events after coronary heart disease derived
from co-expression network analysis and differential analy-
sis of transcriptomics data. Further, DT analysis proposed a
multivariable prediction model for MI and HF, achieving good
classification accuracy (ROC-AUC ranged from 0.86 to 0.91).
This could refine risk prediction for adverse clinical outcomes
beyond the current state-of-the-art and hopefully discriminate
subjects with poor prognoses from those with stable coronary
heart disease. While on the subject, it is worth noting that
due to the limitation in gene coverage of the microarray plat-
form, the prediction model should be further optimized when
higher-throughput data are acquired. In addition, collateral
flow index is a diagnostic measure used to evaluate the

Table 2. Basic information of the five genes subjected to further
characterization

Symbol Gene name Entrez ID

HLA-J Major Histocompatibility Complex, Class I, J
(Pseudogene)

3137

CFP Complement factor properdin 5199

STX11 Syntaxin 11 8676

FLI1 Fli-1 proto-oncogene, ETS transcription factor 2313

NFYC Nuclear transcription factor Y subunit gamma 4802

All genes listed in this table showed positive association with CAD
risk (GSE7638), significant upregulation in obstructive CAD (GSE90074),
and significant upregulation in STEMI (GSE62646). HLA-J: Human leuko-
cyte antigen-J; CFP: Complement factor properdin; STX11: Syntaxin-11;
NFYC: Nuclear transcription factor Y subunit C; STEMI: ST-elevation myocar-
dial infarction; CAD: Coronary artery disease.

sufficiency of collateral circulation within the coronary arter-
ies, serving as a key indicator of the CAD severity and
playing a pivotal role in guiding therapeutic decisions for
CAD, especially when revascularization procedures are under
consideration [31, 32]. In this study, we did not identify
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Figure 4. ROC curve analysis assessing the prognostic value of different classifiers. AUC was calculated to assess the performance. (A) Individual AUC
for five genes (HLA-J, CFP, STX11, FLI1, and NFYC) were summarized in all 353 samples of GSE59867 dataset. GSE59867 samples were then randomly divided
into training and validation subgroups. Performance evaluation of the models generated by DT, RF, and SVM was visualized for both training (B) and validation
(C) subgroups. (D) Next, the four-gene model (HLA-J, CFP, STX11, and NFYC) proposed by the DT method was tested for its HF prediction in 72 samples
(46 SCAD and 26 HF samples covered three timepoints: On the first day, after four–six days, and after one month of STEMI) of GSE59867. (E) Finally,
this model was tested in the 55 samples (46 SCAD and 9 post-STEMI HF) obtained on admission of GSE59867. DT: Decision tree; SVM: Support vector
machine; RF: Random forest; ROC: Receiver operating characteristic; AUC: Area under the ROC curve; HLA-J: Human leukocyte antigen-J;
CFP: Complement factor properdin; STX11: Syntaxin-11; NFYC: Nuclear transcription factor Y subunit C; HF: Heart failure; STEMI: ST-elevation myocardial
infarction; SCAD: Stable coronary artery disease.

any modules correlated with collateral flow index based on
WGCNA, which we consider a potential subject for future
research. Meanwhile, further data accumulation is bound to
expand the application scope of this model to non-ST-elevation
MI (NSTEMI).

The machine learning model built on HLA-J, CFP, STX11,
and NFYC genes demonstrated great value for MI prediction.
Besides, these four genes might be prognostic candidates for HF.
HLA-J is a member of the human leukocyte antigen (HLA) gene
family, pivotal in the immune system for its role in encoding cell
surface proteins critical for immune responses. Recent stud-
ies have highlighted its prognostic significance in various con-
ditions, including multiple sclerosis, breast cancer, and uveal
melanoma [33–35]. CFP plays a role in regulating the comple-
ment system, essential in immune defense. It has been identi-
fied as a potential tumor suppressor in several malignancies,
including breast cancer, lung cancer, and gastric cancer [36, 37].
STX11 participates in crucial intracellular processes, such as
vesicle trafficking and membrane fusion. Its deficiency is
associated with familial hemophagocytic lymphohistiocytosis
type 4 [38]. Furthermore, STX11 has emerged as a novel tumor
suppressor gene implicated in peripheral T-cell lymphoma [39].
NFYC is a transcription factor that regulates the epigenome

and has been identified as an oncogene in choroid plexus
carcinoma [40]. However, to our knowledge, the association
between this four-gene signature and MI and HF has rarely been
reported. Therefore, we performed an enrichment analysis for
the biological pathway and functional gene set to explore its
clinical and biological indications for the risk of MI and HF in
patients with coronary heart disease. Not surprisingly, func-
tional gene sets related to heart contraction, abnormal cardiac
morphology, HF, myocarditis, hypoxia, vasopressin-regulated
water reabsorption, and the inflammatory response were
significantly overrepresented. Apoptosis contributes to car-
diomyocyte cell death in MI and participates in the subsequent
development of symptomatic HF [41]. Oxidative stress induced
during MI leads to platelet reactivity and activation in the circu-
lation, playing a role in atherothrombotic plaque formation, MI,
and subsequent expansion [42]. Statistically significant enrich-
ment of the above pathways drafted a big picture of the cascade
of events leading to a high risk of MI and HF. Moreover, sig-
naling pathways known to contribute significantly or be trig-
gered during the pathogenesis of MI, including JAK-STAT [43],
Wnt [44], and MAPK [45], were enriched. This preliminarily
outlines the underlying molecular mechanisms in the evolution
of this myocardial disorder. In short, the concentration of this
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Figure 5. GSEA plots showing the activation status of biological pathways in distinct gene signature patterns. GSVA was performed to assess
the variation of the gene expression (HLA-J, CFP, STX11, and NFYC) through the samples of the GSE56045 dataset. Samples were subgrouped according
to the mean value of the GSVA score. GSEA was performed to computationally determine whether a gene set shows the statistically significant
difference between subgroups with high and low GSVA scores. (A) GOBP_REGULATION_OF_HEART_CONTRACTION, (B) HP_ACUTE_CORONARY_
SYNDROME, (C) HP_ABNORMAL_CARDIAC_VENTRICULAR_FUNCTION, (D) HP_ABNORMALITY_OF_CARDIOVASCULAR_SYSTEM_ELECTROPHYSIOLOGY,
(E) HP_ABNORMAL_HEART_VALVE_MORPHOLOGY, (F) HP_ABNORMAL_CARDIAC_ATRIUM_MORPHOLOGY, (G) HP_ABNORMAL_CONNECTION_OF_
THE_CARDIAC_SEGMENTS, (H) KEGG_VIRAL_MYOCARDITIS, (I) WINTER_HYPOXIA_METAGENE, (J) KEGG_VASOPRESSIN_REGULATED_WATER_
REABSORPTION, (K) SEKI_INFLAMMATORY_RESPONSE_LPS_UP, (L) KEGG_APOPTOSIS, (M) WEIGEL_OXIDATIVE_STRESS_RESPONSE, (N) KEGG_
JAK_STAT_SIGNALING_PATHWAY, (O) KEGG_WNT_SIGNALING_PATHWAY, and (P) KEGG_MAPK_SIGNALING_PATHWAY were significantly enriched.
ES: enrichment score. A P value less than 0.05 is statistically significant. GSEA: Gene set enrichment analysis; GSVA: Gene set variation analysis;
HLA-J: Human leukocyte antigen-J; CFP: Complement factor properdin; STX11: Syntaxin-11; NFYC: Nuclear transcription factor Y subunit C.

enrichment is very consistent with what we observed in the
modeling and validation studies, underlining the validity of the
four-gene signature.

This study’s model construction has several merits. First,
examining a small number of easily collected, low-cost periph-
eral monocyte predictors is naturally more maneuverable than

tissue assays. Additionally, this study integrated multiple tran-
scriptomics datasets from public databases, totaling 1956 indi-
viduals. We also avoided using the same dataset throughout
the workflow repeatedly. The selected features (gene sig-
nature) input into model development were obtained from
the intersection outcomes of multiple datasets, discovered
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by different technologies. The diversity of variable screening
methods and data sources ensured the feasibility of the input
features. This will support the optimization of STEMI predic-
tion, prevention, and personalized medical strategy to improve
individual outcomes.

Despite these advantages, this study has several limitations
that need to be addressed in future studies. First, although this
study has a split-sample validation (50% for model development
and 50% for validation), it could still be considered as an inter-
nal validation. Ideally, a fully independent external validation
is needed for further confirmation of its reliability. Moreover,
the sample size for both model development and validation
should be increased to optimize predictive capacity and achieve
more satisfactory outcomes. Besides, the subject number for
HF risk prediction was even smaller. Furthermore, all datasets
included in this study originated from research conducted in
Europe and the United States, which could inevitably lead to the
uniform ethnicity composition of subjects (mainly Caucasian).
Socioeconomic status, lifestyle, health care access, and genetic
background may interact with the genes of interest and conse-
quently impact specific phenotypes (e.g., disease risk and sever-
ity), thus influencing the generalizability of our conclusion.
Last but not least, the stability of prediction performance could
be impacted if the models were constructed and validated based
solely on retrospective datasets [46]. In this study, all tran-
scriptomics datasets used in gene signature discovery, model
construction, and validation were retrieved from retrospective
studies. For this reason, further multi-ethnic and large-scale
prospective validations with strict clinical evidence-based data
are warranted.

Conclusion
Our results suggest that this four-gene signature has a pre-
dictive role in identifying CAD patients with an increased
risk of STEMI and post-STEMI HF. This monocyte gene
expression approach coupled with machine learning represents
a promising strategy for enhancing risk stratification in CAD
progression. Future research should further examine this
approach based on monocyte biomarkers for risk stratification
of NSTEMI.
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