
1Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, United States; 2Department of Pharmacy, Mayo Clinic, Rochester, MN, United States; 3Division of
Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, United States.
∗Correspondence to Yewande E. Odeyemi: odeyemi.yewande@mayo.edu

DOI: 10.17305/bb.2023.9754

© 2023 Odeyemi et al. This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).

Biomolecules and Biomedicine, 2024, Vol. 24, No. 2, 337–345 337 www.biomolbiomed.com

R E S E A R C H A R T I C L E

Early machine learning prediction of hospitalized patients
at low risk of respiratory deterioration or mortality in
community-acquired pneumonia: Derivation and
validation of a multivariable model
Yewande E. Odeyemi 1∗ , Amos Lal 1, Erin F. Barreto 2, Allison M. LeMahieu 3, Hemang Yadav 1, Ognjen Gajic 1,
and Phillip Schulte 3

Current prognostic tools for pneumonia predominantly focus on mortality, often neglecting other crucial outcomes such as the need for
advanced respiratory support. The objective of this study was to develop and validate a tool that predicts the early risk of
non-occurrence of respiratory deterioration or mortality. We conducted a single-center, retrospective cohort study involving
hospitalized adult patients with community-acquired pneumonia (CAP) and acute hypoxic respiratory failure from January 2009 to
December 2019 (n = 4379). We employed the gradient boosting machine (GBM) learning to create a model that estimates the
likelihood of patients requiring advanced respiratory support (high-flow nasal cannula [HFNC], non-invasive mechanical ventilation
[NIMV], and invasive mechanical ventilation [IMV]) or mortality during hospitalization. This model utilized readily available data,
including demographic, physiologic, and laboratory data, sourced from electronic health records and obtained within the first 6 h of
admission. Out of the cohort, 890 patients (25.2%) either required advanced respiratory support or died during their hospital stay. Our
predictive model displayed superior discrimination and higher sensitivity (cross-validation C-statistic = 0.71; specificity = 0.56;
sensitivity = 0.72) compared to the pneumonia severity index (PSI) (C-statistic = 0.65; specificity = 0.91; sensitivity = 0.24;
P value < 0.001), while maintaining a negative predictive value (NPV) of approximately 0.85. These data demonstrate that our
machine-learning model predicted the non-occurrence of respiratory deterioration or mortality among hospitalized CAP patients more
accurately than the PSI. The enhanced sensitivity of this model holds the potential for reliably excluding low-risk patients from
pneumonia clinical trials.
Keywords: Community-acquired pneumonia (CAP), machine learning, predictive modeling, advanced respiratory support,
mortality.

Introduction
Pneumonia remains a common cause of acute hypoxemic res-
piratory failure that requires hospitalization, with significant
morbidity and mortality when the intensive care unit (ICU)
transfer is delayed [1]. Current prognostic and risk stratifica-
tion tools for community-acquired pneumonia (CAP) primar-
ily focus on mortality prediction, aiming to inform on illness
severity and the initial site of care. However, there is limited
evidence regarding the disease-specific prediction of deteriora-
tion during a patient’s hospital stay [2]. The pneumonia sever-
ity index (PSI) identifies patients with low risk of mortality
more accurately than other simple prognostic tools, such as the
confusion, urea, respiratory rate, blood pressure, and 65 years
of age or older (CURB-65) score, the confusion, respiratory
rate, blood pressure, and 65 years of age or older (CRB-65)

score, and the age, dehydration, respiratory failure, orien-
tation disturbance, and low blood pressure (A-DROP) score.
Therefore, it is effective and safe in guiding the initial site
of care (whether outpatient or inpatient) with broad gener-
alizability and reproducibility [3–8]. Prediction of mortality
however does not provide accurate identification of patients
who would benefit from intensified management strategies
once they are hospitalized [9]. This subset of high-risk patients
has been defined as having severe CAP when ICU admission
is the sole clinical surrogate [10]. Other prognostic scoring
tools, including the 2001 American Thoracic Society (ATS),
2007 Infectious Disease Society of America (IDSA)/ATS, and the
systolic blood pressure, multilobar chest radiography, albumin
level, respiratory rate, tachycardia, confusion, oxygen level,
and pH level (SMART-COP) score, have performed better than
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the PSI in predicting ICU admission. However, these tools
either directly or indirectly consider criteria that inherently
reflect critical disease, disregarding the trajectory of the need
for advanced respiratory support such as high-flow nasal can-
nula (HFNC) or non-invasive mechanical ventilation (NIMV),
whether inside or outside the ICU setting [10–13]. The objec-
tive of this study was to develop a tool using machine learn-
ing methods for the early risk prediction of non-occurrence
of respiratory deterioration or mortality in hospitalized CAP
patients. Such a tool could be useful for prognostic enrichment
in clinical trials of CAP interventions by excluding low-risk
patients [14].

Materials and methods
Source of data and participants
A retrospective cohort from a single center was analyzed,
comprising hospitalized adult patients (aged ≥ 18 years) with
CAP from January 2009 to December 2019. The cohort was
used to develop the model for respiratory deterioration, using
routinely and readily available information from electronic
health records. This encompassed demographic data, clinical
features, and laboratory data obtained within the initial 6-h
post-admission. Patients who denied the utilization of their
medical records for research purposes were excluded (10%).
The design and reporting of this observational study adhered
to the guidelines specified by the Transparent Reporting of
a multivariable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD).

CAP was defined as an acute infection of the lung
parenchyma that is associated with clinical symptoms (cough,
fever, pleuritic chest pain, and dyspnea) and a new radiographic
infiltrate, not acquired in the hospital or healthcare setting,
identified by the International Classification of Diseases (ICD)
9 (481–486) and 10 (J13, J15, and J18) codes and note search.
The exclusion criteria were similar to other studies [15] and
they included: lack of research authorization, prior hospi-
talization within the 15 days leading up to the admission,
aspiration pneumonia, hospital/ventilator-acquired pneumo-
nia (if diagnosed after 48-h post-admission), interstitial lung
disease, leukopenia, neutropenia, acquired immunodeficiency
syndrome (AIDS), and human immunodeficiency virus (HIV)
infection.

Outcomes
The primary outcome encompassed a combination of the
requirement for advanced respiratory support (which includes
the use of HFNC, NIMV, and invasive mechanical ventilation
[IMV]) or mortality during hospitalization. Given that this
study focused on in-hospital decompensation, we excluded
patients who were not hospitalized and those without a need for
supplemental oxygen.

The secondary outcomes of interest were hospital mortality,
the need for IMV, and the need for NIMV.

For these specified outcomes, patients who have already met
that status within the first 6 h of admission were excluded from
further analysis.

6847 hospital admissions for community-acquired
pneumonia at Mayo Clinic Rochester from

01/01/2009 to 12/31/2019

465 excluded due to lack of
research authorization

934 excluded due to
diagnosis or comorbidity

[leukopenia or neutropenia
(n = 140), AIDS or HIV (n = 9),

ILD (n = 469), aspiration
pneumonia (n = 290),
ventilator assiocated
pneumonia (n = 26)]

940 excluded duplicate
patients

4379 patients included in overall analysis

129 excluded due to age

Figure 1. Study flow diagram. AIDS: Acquired immunodeficiency
syndrome; HIV: Human immunodeficiency virus; ILD: Interstitial lung
disease.

Predictors
Predictor variables included age, sex, race, height, weight,
blood pressure, heart rate, respiratory rate, temperature, med-
ical comorbidities (such as congestive heart failure, chronic
obstructive pulmonary disease [COPD], asthma, liver disease,
neoplastic disease, and renal disease), laboratory data (white
blood cell count with differentials [neutrophils, eosinophils,
lymphocytes], bicarbonate, sodium, blood urea nitrogen [BUN],
and blood gases), and clinical scores (PSI, Sequential Organ
Failure Assessment [SOFA] score, and Acute Physiology and
Chronic Health Evaluation [APACHE] III score), obtained
within initial 6 h of admission. For predictors measured repeat-
edly or longitudinally within these 6 h, only the first observation
was used. For analysis purposes, race was grouped as White or
other/unknown.

Sample size
All eligible patients (n = 4379) meeting the criteria were
included (Figure 1). For our primary outcome, which was
the need for advanced respiratory support or mortality,
3528 patients had not reached that status at 6-h post-admission.
To develop a predictive model for the need of advanced
respiratory support or mortality, we established that a sample
size of n = 3528 would be expected to produce a model with
a mean absolute prediction error of 0.028 in the predicted
outcome probabilities. This was based on an outcome rate
of 25.2% and the inclusion of 32 predictor variables in the
model [16]. Consequently, our sample was expected to produce
a model with predicted values that would exhibit a small mean
error when applied to new individuals.

Ethical statement
The Mayo Clinic Institutional Review Board (IRB) approved
this study prior to its initiation (IRB number: 17-011140, mod-
ification approval date: June 2021, Title: Concordant versus
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discordant corticosteroid use with markers of inflammation in
critically ill patients with pneumonia and ARDS). Informed con-
sent was waived, and all procedures conformed to the ethical
standards set by the Mayo Clinic IRB and the Helsinki Declara-
tion of 1975.

Statistical analysis
Patient demographics, physiological parameters, and clinical
and laboratory data are presented using the median (IQR) for
continuous variables and frequency (percentage) for categori-
cal variables.

To test the hypothesis that a combination of patient
characteristics will accurately predict the need for advanced
respiratory support or mortality, stochastic gradient boosting
machine (GBM) learning was employed. A 5-fold repeated
cross-validation (ten repeats) was used with a grid-search
approach to select tuning parameters [17]: shrinkage, inter-
action depth, minimum number of observations in the terminal
nodes, bag fraction, and number of trees. A threshold level
for classification to advanced respiratory support or mortality
was selected to maximize sensitivity to a negative predictive
value (NPV) of at least 0.85. This approach was chosen over
using Youden’s Index or other ad hoc methods because the
anticipated successful model would aim to screen out those at
low risk (of needing advanced respiratory support or death)
as a prognostic enrichment strategy for enrollment in clinical
trials. Primary metrics for model development and validation
included the area under the receiver operating characteristic
curve (C-statistic). Metrics for threshold classification included
sensitivity, specificity, positive predictive value (PPV),
and NPV.

GBM models were also evaluated for secondary outcomes,
which were in-hospital mortality, and the need for IMV and
NIMV, using the same methods applied for the primary out-
come. Those prediction models were developed using the subset
of patients who were event-free at the prediction time (within
6 h of admission).

Our model was additionally tuned to exclude variables with
less influence for the primary and secondary outcome (Model 1:
all variables, Model 2: parsimonious model). DeLong’s test was
used to compare the area under the curve (AUC) scores for our
parsimonious models against PSI and CURB-65 for the outcomes
of advanced respiratory support or mortality, and solely for
mortality.

Any missing predictors were treated as a distinct and possi-
bly informative segment of the data, reflecting actual practices
where such omissions are common. This allows the resulting
GBM prediction model to handle missing (unmeasured) inputs
and still produce the predicted probability of an event. There
were no missing data for the primary and secondary outcomes
or for the following predictors: age, gender, race, comorbidities,
altered mental status, PSI, or CURB-65. Data management and
analysis were conducted using SAS version 9.4 (SAS Institute
Inc., Cary, NC, USA) and R version 4.1.2 (RStudio Team 2021,
Boston, MA, USA). We used the R packages “gbm” and “caret”
for model training.

Table 1. Patient outcomes of interest

Overall (n = 4379)

Advanced respiratory support or mortality during
hospitalization, n (%)*

890/3528 (25%)

Hospital mortality, n (%) 155 (3%)

Invasive mechanical ventilation, n (%)* 402/3966 (10%)

Non-invasive mechanical ventilation, n (%)* 674/3819 (18%)

*Based on the sample size of patients who were event-free at
6-h post-admission.

Results
Demographics and clinical characteristics are described in
Table S1. Patient outcomes within the cohort are detailed in
Table 1. Of the cohort, a total of 890 patients (25.2%) needed
advanced respiratory support or died in the hospital.

Primary outcome
The GBM prediction model of the need for advanced respi-
ratory support or mortality due to pneumonia demonstrated
a fair discrimination (cross-validation C-statistic = 0.713;
accuracy rate = 61.2%, 95% CI 59.5%–62.8%; NPV = 0.860;
specificity = 0.574; sensitivity = 0.723). For classification
purposes, a predicted probability of 0.30 or above was deemed
as “at risk” to achieve an NPV ≥ 0.85. In contrast, the PSI’s per-
formance in predicting advanced respiratory support was poor
(cross-validation C-statistic = 0.647; accuracy rate = 74.2%,
95% CI 72.7%–75.6%; NPV = 0.780; specificity = 0.911;
sensitivity = 0.238) (Table 2 and Figure S1). Similarly, the
CURB-65’s performance was also poor (cross-validation
C-statistic = 0.621; accuracy rate = 38.1%, 95% CI 36.5%–39.7%;
NPV = 0.850; specificity = 0.209; sensitivity = 0.891). Upon
further tuning to omit less influential variables (for a parsimo-
nious model, Table S2) and incorporating exploratory models
that include the need for vasopressor support, the results
remained consistent. According to DeLong’s test, our GBM
model had a better AUC score compared to PSI (z score = 5.19;
P value < 0.001) and CURB-65 (z score = 7.15; P value < 0.001).
Variables with the highest importance in the final model were
respiratory rate, weight, BUN, and systolic blood pressure
(Figure 2).

Secondary outcomes
During hospitalization, 155 patients (3.5%) died. The model’s
prediction of in-hospital mortality demonstrated an accept-
able discrimination in the dataset, with a cross-validation AUC
score of 0.752 (accuracy rate = 95.9%, 95% CI 95.3%–96.5%;
NPV = 0.967; specificity = 0.991; sensitivity = 0.084). This
was slightly lower than the PSI, which had a cross-validation
AUC score of 0.772 (accuracy rate = 96.5%, 95% CI 95.9%–97.0%;
NPV = 0.965; specificity = 1.000; sensitivity = 0) (Table 3 and
Figure S2).

The CURB-65 prediction of in-hospital mortality was
similar to our GBM model, with a cross-validation AUC
score of 0.695 (accuracy rate = 96.5%, 95% CI 95.9%–97.0%;
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Table 2. Prediction of advanced respiratory support or mortality

Gradient boosting models with Bernoulli distribution

AUC score Accuracy rate (95% CI) Specificity Sensitivity NPV PPV

First model

Cross-validation model 0.710 0.600 (0.584 – 0.617) 0.560 0.722 0.857 0.356

Second model (parsimonious)

Cross-validation model 0.713 0.612 (0.595 – 0.628) 0.574 0.723 0.860 0.364
PSI cross-validation model 0.647 0.742 (0.727 – 0.756) 0.911 0.238 0.780 0.475
CURB-65 cross-validation model 0.621 0.381 (0.365 – 0.397) 0.209 0.891 0.850 0.275

AUC: Area under the curve; NPV: Negative predictive value; PPV: Positive predictive value; PSI: Pneumonia severity index;
CURB-65: Confusion, urea, respiratory rate, blood pressure, and 65 years of age or older score.

Table 3. Prediction of mortality

Gradient boosting models with Bernoulli distribution

AUC score Accuracy rate (95% CI) Specificity Sensitivity NPV PPV

First model

Cross-validation model 0.731 0.959 (0.953 – 0.965) 0.991 0.084 0.967 0.265

Second model (parsimonious)

Cross-validation model 0.727 0.963 (0.957 – 0.968) 0.995 0.077 0.967 0.364
PSI cross-validation model 0.772 0.965 (0.959 – 0.970) 1.000 0 0.965 –
CURB-65 cross-validation model 0.695 0.965 (0.959 – 0.970) 1.00 0 0.965 –

AUC: Area under the curve; NPV: Negative predictive value; PPV: Positive predictive value; PSI: Pneumonia severity index;
CURB-65: Confusion, urea, respiratory rate, blood pressure, and 65 years of age or older score.
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Figure 2. Relative importance of the top 15 variables in the advanced
respiratory support or mortality model. Resp: Respiratory; BUN: Blood
urea nitrogen; BP: Blood pressure; NLR: Neutrophil to lymphocyte ratio.

NPV = 0.965; specificity = 1.000; sensitivity = 0). DeLong’s
test, when comparing our GBM model, did not detect sig-
nificant differences in the AUC score compared to the
PSI (z score = −1.66; P value = 0.096) and the CURB-65
(z score = 1.39; P value = 0.164). The variables of high-
est importance in the final model included lymphocytes,
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Figure 3. Relative importance of the top 15 variables in the mortality
model. Resp: Respiratory; BUN: Blood urea nitrogen; BP: Blood pressure;
WBC: White blood cells; NLR: Neutrophil to lymphocyte ratio.

bicarbonate, respiratory rate, and systolic blood pressure
(Figure 3 and Table S3).

After the exclusion of patients who required inva-
sive and non-invasive ventilation within 6 h of admis-
sion, 402 patients (10.1%) and 674 patients (17.7%) patients
required IMV and NIMV, respectively, during hospitalization.
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The model’s predictions for the need for IMV (cross-validation
AUC = 0.736; accuracy rate = 87.0%, 95% CI 85.9%–88.0%;
NPV = 0.924; specificity = 0.932; sensitivity = 0.321),
and for the need for NIMV (cross-validation AUC = 0.732;
accuracy rate = 66.3%, 95% CI 64.8%–67.8%; NPV = 0.892;
specificity = 0.673; sensitivity = 0.619) were deemed
acceptable.

Discussion
Although the PSI is effective and safe in guiding the ini-
tial site of care (whether inpatient or outpatient treatment),
it poorly predicts which hospitalized patients might require
intensified management [2, 9]. Other prognostic tools, such
as the IDSA/ATS guidelines, SMART-COP, and early warn-
ing scores, have shown better performance in predicting ICU
admissions based on clinical endpoints of IMV and/or vaso-
pressor support [10, 11–13]. However, these tools focus on a
critical late stage of the disease course, where the endpoint of
ICU admission identifies only a specific subgroup of high-risk
patients. Moreover, ICU admission decisions are prone to multi-
ple biases, including limited resources, advance directives, and
hospital policies.

Importantly, these prognostic tools do not consider the need
for advanced respiratory support methods, such as HFNC and
NIMV, which are increasingly being used in both the ICU and
non-ICU settings.

Therefore, it is important to explore clinical endpoints other
than ICU admission and mortality when aiming for early prog-
nostication of hospitalized patients with CAP.

Predicting the need or the lack of need for advanced
respiratory support (HFNC/NIMV/IMV), early in the dis-
ease’s course can provide valuable insights. Such predic-
tions, unlike the clinical endpoints of HFNC/NIMV failure
described in studies like those involving the ratio of oxygen
saturation/FiO2 to respiratory rate (ROX) index and the heart
rate, acidosis, consciousness, oxygenation, and respiratory rate
(HACOR) score [19–22], could potentially inform important
research enrichment strategies. Such prediction tools could
facilitate prognostic enrichment in clinical trials by exclud-
ing low-risk patients who are unlikely to benefit from an
intervention.

In our large single-center cohort study of patients with CAP,
we found that early prediction (within the first 6 h of admission)
of hospitalized patients at low risk of respiratory deterioration
or mortality was better using a machine-learning model com-
pared to the PSI and the CURB-65. The PSI’s higher specificity
would classify more patients as low risk, while distinguishing
poorly those at high risk due to its lower sensitivity. Never-
theless, with the same NPV, our model’s higher sensitivity,
compared to the PSI, assures a reduction in misclassification of
high-risk patients as low-risk, thereby facilitating the absolute
exclusion of those at low risk. While these findings may have
limited clinical relevance, an R shiny application for the model
is in development for use as a prognostic enrichment tool. This
will help exclude low-risk patients in time-sensitive pneumonia
clinical trials.

In our study, the machine-learning models for secondary
outcomes showed a fair discriminatory performance when
compared to the primary outcome. The model’s prediction of
in-hospital mortality was not statistically different compared
to the PSI in this cohort, and the AUC was consistent with
prior studies [23–25]. Interestingly, the most important vari-
ables in the model included the bicarbonate and the absolute
lymphocyte count, both of which are readily available but not
included in the PSI. When comparing our findings with a recent
machine-learning model developed to predict 30-day mortality
in CAP patients, our model showed a lesser discriminatory per-
formance compared to the causal probabilistic network (CPN)
(AUC = 0.80) [26]. The CPN model utilized data collected within
the first 24 h of admission, in contrast to our model which uti-
lized data within the first 6 h of admission. For similar reasons,
the model’s prediction of the need for IMV was acceptable but
weaker when compared to the SMART-COP (AUC = 0.87) [13].
The model’s prediction of the need for NIMV also showed
acceptable discriminatory capacity. To our understanding, no
other study has reported similar findings utilizing data obtained
within the first 6 h of admission to predict the need for NIMV
during hospitalization.

The use of continuous variables rather than dichotomous
variables, which can sometimes oversimplify variable inter-
pretation, and the application of a 5-fold cross-validation are
notable strengths of our study. However, several limitations
also need to be highlighted including the potential bias existing
within the dataset, inherent to its single-center nature. As a
result, the findings presented in this paper are limited to the
characteristics as seen in a large academic referral center. In
this study, we excluded patients with mild ambulatory dis-
eases and those who did not require oxygen in the first 6 h of
admission. This exclusion was related to our specific cohort of
interest. Additionally, the routinely measured clinical variables
within the first 6 h of admission, which were less likely to be
missing, could be insufficient for optimal model discrimination
while unmeasured parameters, including but not limited to
treatment interactions, genetic predisposition, and pathogen
characteristics unknown at the time of admission, may have an
important role in the risk of respiratory deterioration or mor-
tality. Lastly, our study did not account for the potential occur-
rence of a second, independent pneumonia event or deaths
unrelated to pneumonia.

Additional research is needed to evaluate the prediction of
pneumonia-specific clinical endpoints in CAP, beyond just mor-
tality, intubation needs, and ICU admissions, in order to bet-
ter identify patients who are more or less likely to deteriorate
shortly after being admitted.

Conclusion
Our findings demonstrate that a machine-learning model
more accurately predicted the absence of respiratory deteri-
oration or mortality among hospitalized CAP patients com-
pared to the PSI. The model’s higher sensitivity could help
in effectively excluding low-risk patients from pneumonia
clinical trials.
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Supplemental data

Table S1. Demographics and clinical characteristics of patients

Characteristic Overall (n = 4379)

Sex, n (%)

Female 2015 (46%)
Male 2364 (54%)

Age (years), median (IQR) 73.6 (61.2 – 83.3)

Race, n (%)

American Indian/Alaskan Native 19 (0%)
Asian 51 (1%)
Black or African American 67 (2%)
Other 85 (2%)
Unknown 28 (1%)
White 4129 (94%)

Comorbidities, n (%)

Asthma 664 (15%)
Congestive heart failure 1334 (30%)
COPD 1565 (36%)
Liver disease 138 (3%)
Neoplastic disease 1649 (38%)
Renal disease 1294 (30%)

First physical examination, median (IQR)

Altered mental status, n (%) 534 (12%)
Weight (kg), n = 4054 78.7 (64.7 – 95.6)
Diastolic BP (mmHg), n = 4316 69.0 (59.0 – 81.0)
Pulse (bpm), n = 4288 91.0 (78.0 – 105.0)
Respiratory rate (rpm), n = 2789 21.0 (18.0 – 25.0)
Systolic BP (mmHg), n = 4316 127.0 (112.0 – 144.0)
Temperature (°C), n = 4279 36.8 (36.6 – 37.2)

Lab and radiologic findings, median (IQR)

Blood urea nitrogen (mg/dL), n = 4158 20.0 (14.0 – 30.0)
Glucose (mg/dL) , n = 4192 129.0 (108.0 – 165.0)
Hematocrit (%), n = 4198 37.5 (33.3 – 41.2)
Sodium (mmol/L), n = 4212 137.0 (134.0 – 140.0)
Partial pressure of arterial oxygen (mmHg),
n = 1615

68.0 (47.0 – 92.0)

WBC (x 10∧9/L), n = 4201 11.8 (8.6 – 15.8)
Neutrophils (x 10∧9/L), n = 3701 9.5 (6.6 – 13.2)
Eosinophils (x 10∧9/L), n = 2602 0.1 (0 – 0.2)
Lymphocytes (x 10∧9/L), n = 3689 1.0 (0.6 – 1.5)
Neutrophil/Lymphocyte ratio, n = 3682 9.7 (5.4 – 17.0)
Bicarbonate (mmol/L), n = 3982 25.0 (23.0 – 28.0)
Arterial pH, n = 1766 7.4 (7.3 – 7.4)
Pleural effusion, n = 635, n (%) 326 (51%)

Initial clinical scores, median (IQR)

Pneumonia severity index 115.0 (89.0 – 143.0)
CURB-65 3.0 (2.0 – 3.0)
SOFA, n = 1812 4.0 (2.0 – 7.0)
APACHE III, n = 1812 50.0 (39.0 – 64.0)

COPD: Chronic obstructive pulmonary disease; BP: Blood pressure; bpm:
Beats per minute; rpm: Respirations per minute; WBC: White blood cells;
CURB-65: Confusion, urea, respiratory rate, blood pressure, and 65 years
of age or older score; SOFA: Sequential Organ Failure Assessment score;
APACHE III: Acute Physiology and Chronic Health Evaluation III score.

Table S2. Variables used in the predictive models for advanced
respiratory support or mortality

Variable Model 1 Model 2 PSI

Demography

Age Yes Yes Yes
Sex Yes Yes
Race Yes Yes
Nursing home resident Yes

Comorbidities

Neoplastic disease Yes Yes
Liver disease Yes Yes
Congestive heart failure Yes Yes Yes
Renal disease Yes Yes
Asthma Yes Yes
COPD Yes
Cerebrovascular disease Yes

Vital parameters

Weight Yes Yes
Temperature Yes Yes Yes
Systolic blood pressure Yes Yes Yes
Diastolic blood pressure Yes Yes
Heart rate Yes Yes Yes
Respiratory rate Yes Yes Yes
Mental status Yes Yes Yes

Lab parameters

BUN Yes Yes Yes
Sodium Yes Yes Yes
Glucose Yes Yes Yes
Hematocrit Yes Yes Yes
WBC Yes Yes
Eosinophils Yes Yes
Neutrophils Yes Yes
Lymphocytes Yes Yes
NLR Yes Yes
Bicarbonate Yes Yes
pH Yes
PaO2 Yes

Radiology

Chest X-ray Yes

PSI: Pneumonia severity index; COPD: Chronic obstructive pulmonary dis-
ease; BUN: Blood urea nitrogen; WBC: White blood cells; NLR: Neutrophil to
lymphocyte ratio.
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Table S3. Variables used in the predictive models for mortality

Variable Model 1 Model 2 PSI

Demography

Age Yes Yes Yes
Sex Yes Yes Yes
Race Yes
Nursing home resident Yes

Comorbidities

Neoplastic disease Yes Yes Yes
Liver disease Yes Yes Yes
Congestive heart failure Yes Yes Yes
Renal disease Yes Yes Yes
Asthma Yes Yes
COPD Yes Yes
Cerebrovascular disease Yes

Vital parameters

Weight Yes Yes
Temperature Yes Yes Yes
Systolic blood pressure Yes Yes Yes
Diastolic blood pressure Yes Yes
Heart rate Yes Yes Yes
Respiratory rate Yes Yes Yes
Mental status Yes Yes Yes

Lab parameters

BUN Yes Yes Yes
Sodium Yes Yes Yes
Glucose Yes Yes Yes
Hematocrit Yes Yes Yes
WBC Yes Yes
Eosinophils Yes Yes
Neutrophils Yes Yes
Lymphocytes Yes Yes
NLR Yes Yes
Bicarbonate Yes Yes
pH Yes
PaO2 Yes

Radiology

Chest X-ray Yes Yes
Care level at 6 h post admission Yes

PSI: Pneumonia severity index; COPD: Chronic obstructive pul-
monary disease; BUN: Blood urea nitrogen; WBC: White blood cells;
NLR: Neutrophil to lymphocyte ratio.
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Figure S1. ROC plot comparing the validation model with the PSI model
for advanced respiratory support or mortality. ROC: Receiver operating
characteristic; PSI: Pneumonia severity index; AUC: Area under the curve.
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Figure S2. ROC plot comparing the validation model with the PSI model
solely for mortality. ROC: Receiver operating characteristic; PSI: Pneumo-
nia severity index; AUC: Area under the curve.
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