Encapsulated probiotics and nanoprobiotics – Biocompatible materials, processing technologies, and applications: A review

Authors

  • Abrar Hussain Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan https://orcid.org/0009-0004-2228-729X
  • Warisha Alvi Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
  • Hesham R. El-Seedi Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China.
  • Syed Abid Ali Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan https://orcid.org/0000-0003-0226-8257

DOI:

https://doi.org/10.17305/bb.2025.13322

Keywords:

Probiotics, nanoprobiotics, encapsulation, nanoencapsulation, probiotication

Abstract

Probiotic efficacy is contingent upon delivering a sufficient number of viable cells to the site of action. However, industrial processing, storage, and gastrointestinal stresses frequently diminish survival rates below the ~10⁶–10⁷ CFU/g or mL typically required at the time of consumption. This review aims to provide a comprehensive overview of probiotic encapsulation—particularly micro- and nanoencapsulation—as a strategy to enhance viability and facilitate timely, site-specific release. We synthesized and analyzed existing literature on key encapsulating materials, including natural polysaccharides and proteins such as alginate, chitosan, pectin, starch, casein/whey, and selected synthetic pH-responsive polymers. We also examined major encapsulation techniques, including extrusion, emulsification, spray-drying, freeze-drying, electrospinning, and coacervation, with a focus on release mechanisms and compatibility with food matrices. Overall, encapsulation consistently improved resistance to acid, bile, oxygen, heat, and dehydration, often resulting in reduced viability losses compared to free cells, enhanced storage stability, and expanded applications in functional foods and novel biomedical delivery systems. Multilayer and nanoscale systems frequently provided additional protection and targeted release in the intestinal and colonic regions. However, performance is still dependent on specific strains and matrices, and challenges persist regarding process-induced damage, premature release, sensory and textural alterations, cost and scalability, and safety and regulatory standardization, particularly for nano-enabled formats. In conclusion, encapsulated probiotics represent a promising platform; however, future advancements should focus on the development of smart, stimuli-responsive materials, scalable automated manufacturing processes, and functional validation that extends beyond viable cell counts.

Citations

Downloads

Download data is not yet available.

References

Mackowiak PA. Recycling Metchnikoff: Probiotics, the Intestinal Microbiome and the Quest for Long Life. Front Public Health. 2013;1:1–3.

https://doi.org/10.3389/fpubh.2013.00052

Podolsky SH. Metchnikoff and the microbiome. Lancet. 2012;380(9856):1810–1.

https://doi.org/10.1016/S0140-6736(12)62018-2

Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–14.

https://doi.org/10.1038/nrgastro.2014.66

Hussain A, Koser N, Aun SM, Siddiqui MF, Malik S, Ali SA. Deciphering the role of probiotics in mental health: a systematic literature review of psychobiotics. Benef Microbes. 2024;16(2):135–56.

https://doi.org/10.1163/18762891-bja00053

Naidu AS, Bidlack WR, Clemens RA. Probiotic Spectra of Lactic Acid Bacteria (LAB). Crit Rev Food Sci Nutr. 1999;39(1):13–126.

https://doi.org/10.1080/10408699991279187

Hussain A, Abid Ali S. Exploring Enterococcus Species for their Next-Generation Probiotics Potential. In: Probiotics, Prebiotics, and Postbiotics in Human Health and Sustainable Food Systems. IntechOpen; 2024. Chapter 13.

https://doi.org/10.5772/intechopen.100730

Nagpal R, Kumar A, Kumar M, Behare PV, Jain S, Yadav H. Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS Microbiol Lett. 2012;334(1):1–15.

https://doi.org/10.1111/j.1574-6968.2012.02593.x

Xu C, Gantumur MA, Sun J, Guo J, Ma J, Jiang Z, et al. Design of probiotic delivery systems for targeted release. Food Hydrocoll. 2024;149:109588.

https://doi.org/10.1016/j.foodhyd.2023.109588

Liang D, Wu F, Zhou D, Tan B, Chen T. Commercial probiotic products in public health: current status and potential limitations. Crit Rev Food Sci Nutr. 2024;64(19):6455–76.

https://doi.org/10.1080/10408398.2023.2169858

Hussain A, Arifa AN, Qureshi SR, Parveen S, Nisa UH, Ali SA. The Potential Use of Probiotics as Medicine. In: Liu P, editor. Gut Heath, Microbiota and Animal Diseases. Faisalabad (Pakistan): Unique Scientific Publishers; 2024. p. 30–43.

https://doi.org/10.47278/book.CAM/2024.058

Afzaal M, Saeed F, Ateeq H, Imran A, Yasmin I, Shahid A, et al. Survivability of probiotics under hostile conditions as affected by prebiotic-based encapsulating materials. Int J Food Prop. 2022;25(1):2044–54.

https://doi.org/10.1080/10942912.2022.2121836

Misra S, Pandey P, Dalbhagat CG, Mishra HN. Emerging Technologies and Coating Materials for Improved Probiotication in Food Products: a Review. Food Bioprocess Technol. 2022;15(5):998–1039.

https://doi.org/10.1007/s11947-021-02753-5

Kechagia M, Basoulis D, Konstantopoulou S, Dimitriadi D, Gyftopoulou K, Skarmoutsou N, et al. Health Benefits of Probiotics: A Review. ISRN Nutr. 2013;2013:1–7.

https://doi.org/10.5402/2013/481651

Chugh B, Kamal-Eldin A. Bioactive compounds produced by probiotics in food products. Curr Opin Food Sci. 2020;32:76–82.

https://doi.org/10.1016/j.cofs.2020.02.003

Sun Q, Yin S, He Y, Cao Y, Jiang C. Biomaterials and Encapsulation Techniques for Probiotics: Current Status and Future Prospects in Biomedical Applications. Nanomaterials. 2023;13(15):2185.

https://doi.org/10.3390/nano13152185

Xu Y, Yan X, Zheng H, Li J, Wu X, Xu J, et al. The application of encapsulation technology in the food industry: Classifications, recent advances, and perspectives. Food Chem X. 2024;21:101240.

https://doi.org/10.1016/j.fochx.2024.101240

Strompfová V, Lauková A, Ouwehand AC. Lactobacilli and enterococci – Potential probiotics for dogs. Folia Microbiol (Praha). 2004;49(2):203–7.

https://doi.org/10.1007/BF02931403

Sanders ME. Probiotics: Definition, sources, selection, and uses. Clin Infect Dis. 2008;46(Suppl 2):S58–S151.

https://doi.org/10.1086/523341

de Melo Pereira GV, de Oliveira Coelho B, Magalhães Júnior AI, Thomaz-Soccol V, Soccol CR. How to select a probiotic? A review and update of methods and criteria. Biotechnol Adv. 2018;36(8):2060–76.

https://doi.org/10.1016/j.biotechadv.2018.09.003

Liu L, Helal SE, Peng N. CRISPR-Cas-Based Engineering of Probiotics. BioDesign Res. 2023;5:0017.

https://doi.org/10.34133/bdr.0017

Ma J, Lyu Y, Liu X, Jia X, Cui F, Wu X, et al. Engineered probiotics. Microb Cell Fact. 2022;21(1):72.

https://doi.org/10.1186/s12934-022-01799-0

Hussain A, Akram S, Ahmad D, Rehman M, Ahmed A, Ali SA. Molecular Assessment and Validation of the Selected Enterococcal Strains as Probiotics. Probiotics Antimicrob Proteins. 2023;17(1):378–92.

https://doi.org/10.1007/s12602-023-10163-6

Roobab U, Batool Z, Manzoor MF, Shabbir MA, Khan MR, Aadil RM. Sources, formulations, advanced delivery and health benefits of probiotics. Curr Opin Food Sci. 2020;32:17–28.

https://doi.org/10.1016/j.cofs.2020.01.003

Ishibashi N, Yamazaki S. Probiotics and safety. Am J Clin Nutr. 2001;73(2):1–6.

https://doi.org/10.1093/ajcn/73.2.465s

Pradhan D, Mallappa RH, Grover S. Comprehensive approaches for assessing the safety of probiotic bacteria. Food Control. 2020;108:106872.

https://doi.org/10.1016/j.foodcont.2019.106872

Sarita B, Samadhan D, Hassan MZ, Kovaleva EG. A comprehensive review of probiotics and human health-current prospective and applications. Front Microbiol. 2025;15:1–14.

https://doi.org/10.3389/fmicb.2024.1487641

Hanchi H, Mottawea W, Sebei K, Hammami R. The Genus Enterococcus: Between Probiotic Potential and Safety Concerns–An Update. Front Microbiol. 2018;9:1–16.

https://doi.org/10.3389/fmicb.2018.01791

Al-Fakhrany OM, Elekhnawy E. Next-generation probiotics: the upcoming biotherapeutics. Mol Biol Rep. 2024;51(1).

https://doi.org/10.1007/s11033-024-09398-5

Abouelela ME, Helmy YA. Next-Generation Probiotics as Novel Therapeutics for Improving Human Health: Current Trends and Future Perspectives. Microorganisms. 2024;12(3):430.

https://doi.org/10.3390/microorganisms12030430

Kaźmierczak-Siedlecka K, Skonieczna-Żydecka K, Hupp T, Duchnowska R, Marek-Trzonkowska N, Połom K. Next-generation probiotics – do they open new therapeutic strategies for cancer patients? Gut Microbes. 2022;14(1):1–13.

https://doi.org/10.1080/19490976.2022.2035659

Reuben RC, Roy PC, Sarkar SL, Rubayet Ul Alam ASM, Jahid IK. Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties. J Dairy Sci. 2020;103(2):1223–37.

https://doi.org/10.3168/jds.2019-17092

Anwer M, Wei MQ. Harnessing the power of probiotic strains in functional foods: nutritive, therapeutic, and next-generation challenges. Food Sci Biotechnol. 2024;33(9):2081–95.

https://doi.org/10.1007/s10068-024-01630-z

Xu C, Ban Q, Wang W, Hou J, Jiang Z. Novel nano-encapsulated probiotic agents: Encapsulate materials, delivery, and encapsulation systems. J Control Release. 2022;349:184–205.

https://doi.org/10.1016/j.jconrel.2022.06.061

De Prisco A, Mauriello G. Probiotication of foods: A focus on microencapsulation tool. Trends Food Sci Technol. 2016;48:27–39.

https://doi.org/10.1016/j.tifs.2015.11.009

Huq T, Fraschini C, Khan A, Riedl B, Bouchard J, Lacroix M. Alginate based nanocomposite for microencapsulation of probiotic: Effect of cellulose nanocrystal (CNC) and lecithin. Carbohydr Polym. 2017;168:61–9.

https://doi.org/10.1016/j.carbpol.2017.03.032

Wendel U. Assessing Viability and Stress Tolerance of Probiotics–A Review. Front Microbiol. 2021;12:818468.

https://doi.org/10.3389/fmicb.2021.818468

Liu X, Mao B, Tang X, Zhang Q, Zhao J, Chen W, et al. Bacterial viability retention in probiotic foods: a review. Crit Rev Food Sci Nutr. 2025;0(0):1–23.

https://doi.org/10.1080/10408398.2025.2488228

Wang X, Hu J, Zhang H, Zhou P. Probiotics Encapsulated via Biological Macromolecule for Neurological Therapy and Functional Food: A Review. Probiotics Antimicrob Proteins. 2025;(0123456789).

https://doi.org/10.1007/s12602-025-10453-1

Gheorghita R, Anchidin-Norocel L, Filip R, Dimian M, Covasa M. Applications of Biopolymers for Drugs and Probiotics Delivery. Polymers (Basel). 2021;13(16):2729.

https://doi.org/10.3390/polym13162729

Yang S, Wei S, Wu Y, Fang Y, Deng Z, Xu J, et al. Encapsulation techniques, action mechanisms, and evaluation models of probiotics: Recent advances and future prospects. Food Front. 2024;5(3):1212–39.

https://doi.org/10.1002/fft2.374

Safeer Abbas M, Afzaal M, Saeed F, Asghar A, Jianfeng L, Ahmad A, et al. Probiotic viability as affected by encapsulation materials: recent updates and perspectives. Int J Food Prop. 2023;26(1):1324–50.

https://doi.org/10.1080/10942912.2023.2213408

Dangi P, Chaudhary N, Chaudhary V, Virdi AS, Kajla P, Khanna P, et al. Nanotechnology impacting probiotics and prebiotics: a paradigm shift in nutraceuticals technology. Int J Food Microbiol. 2023;388:110083.

https://doi.org/10.1016/j.ijfoodmicro.2022.110083

Kadam O, Dalai S, Chauhan B, Guru RR, Mitra S, Raytekar N, et al. Nanobiotechnology Unveils the Power of Probiotics: A Comprehensive Review on the Synergistic Role of Probiotics and Advanced Nanotechnology in Enhancing Geriatric Health. Cureus. 2025;17(3):1–21.

https://doi.org/10.7759/cureus.80478

Chen A, Gong Y, Wu S, Du Y, Liu Z, Jiang Y, et al. Navigating a challenging path: precision disease treatment with tailored oral nano-armor-probiotics. J Nanobiotechnology. 2025;23(1):72.

https://doi.org/10.1186/s12951-025-03141-3

Ghosh S, Sarkar B, Kaushik A, Mostafavi E. Nanobiotechnological prospects of probiotic microflora: Synthesis, mechanism, and applications. Sci Total Environ. 2022;838:156212.

https://doi.org/10.1016/j.scitotenv.2022.156212

Vijayaram S, Razafindralambo H, Sun YZ, Piccione G, Multisanti CR, Faggio C. Synergistic interaction of nanoparticles and probiotic delivery: A review. J Fish Dis. 2024;47(5):1–15.

https://doi.org/10.1111/jfd.13916

Ramadevi S, Meenakshi S. An epitome on encapsulation of probiotics. Arch Mater Sci Eng. 2022;116(1):34–41.

https://doi.org/10.5604/01.3001.0016.0978

Yang X, Wang C, Wang Q, Zhang Z, Nie W, Shang L. Armored probiotics for oral delivery. Smart Med. 2023;2(4).

https://doi.org/10.1002/SMMD.20230019

Yao M, Xie J, Du H, McClements DJ, Xiao H, Li L. Progress in microencapsulation of probiotics: A review. Compr Rev Food Sci Food Saf. 2020;19(2):857–74.

https://doi.org/10.1111/1541-4337.12532

Latif A, Shehzad A, Niazi S, Zahid A, Ashraf W, Iqbal MW, et al. Probiotics: mechanism of action, health benefits and their application in food industries. Front Microbiol. 2023;14.

https://doi.org/10.3389/fmicb.2023.1216674

Sharma H, Sharma S, Bajwa J, Chugh R, Kumar D. Polymeric carriers in probiotic delivery system. Carbohydr Polym Technol Appl. 2023;5:100301.

https://doi.org/10.1016/j.carpta.2023.100301

D'Amico V, Cavaliere M, Ivone M, Lacassia C, Celano G, Vacca M, et al. Microencapsulation of Probiotics for Enhanced Stability and Health Benefits in Dairy Functional Foods: A Focus on Pasta Filata Cheese. Pharmaceutics. 2025;17(2):185.

https://doi.org/10.3390/pharmaceutics17020185

Govender M, Choonara YE, Kumar P, du Toit LC, van Vuuren S, Pillay V. A Review of the Advancements in Probiotic Delivery: Conventional vs. Non-conventional Formulations for Intestinal Flora Supplementation. AAPS PharmSciTech. 2013;15(1):29–43.

https://doi.org/10.1208/s12249-013-0027-1

Baral KC, Bajracharya R, Lee SH, Han HK. Advancements in the Pharmaceutical Applications of Probiotics: Dosage Forms and Formulation Technology. Int J Nanomedicine. 2021;16:7535–56.

https://doi.org/10.2147/IJN.S337427

Garcia-Brand AJ, Quezada V, Gonzalez-Melo C, Bolaños-Barbosa AD, Cruz JC, Reyes LH. Novel Developments on Stimuli-Responsive Probiotic Encapsulates: From Smart Hydrogels to Nanostructured Platforms. Fermentation. 2022;8(3):1–29.

https://doi.org/10.3390/fermentation8030117

Rajam R, Subramanian P. Encapsulation of probiotics: past, present and future. Beni-Suef Univ J Basic Appl Sci. 2022;11(1):46.

https://doi.org/10.1186/s43088-022-00228-w

De Prisco A, Maresca D, Ongeng D, Mauriello G. Microencapsulation by vibrating technology of the probiotic strain Lactobacillus reuteri DSM 17938 to enhance its survival in foods and in gastrointestinal environment. LWT – Food Sci Technol. 2015;61(2):452–62.

https://doi.org/10.1016/j.lwt.2014.12.011

Zhang T, Shang C, Du T, Zhuo J, Wang C, Li B, et al. Cytoprotection of probiotics by nanoencapsulation for advanced functions. Trends Food Sci Technol. 2023;142:104227.

https://doi.org/10.1016/j.tifs.2023.104227

Razavi S, Janfaza S, Tasnim N, Gibson DL, Hoorfar M. Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocoll. 2021;120:106882.

https://doi.org/10.1016/j.foodhyd.2021.106882

Singh S, Gupta R, Chawla S, Gauba P, Singh M, Tiwari RK, et al. Natural sources and encapsulating materials for probiotics delivery systems: Recent applications and challenges in functional food development. Front Nutr. 2022;9.

https://doi.org/10.3389/fnut.2022.971784

Vijayaram S, Sinha R, Faggio C, Ringø E, Chou CC. Biopolymer encapsulation for improved probiotic delivery: Advancements and challenges. AIMS Microbiol. 2024;10(4):986–1023.

https://doi.org/10.3934/microbiol.2024043

Priya AJ, Vijayalakshmi SP, Raichur AM. Enhanced survival of probiotic Lactobacillus acidophilus by encapsulation with nanostructured polyelectrolyte layers through layer-by-layer approach. J Agric Food Chem. 2011;59(21):11838–45.

https://doi.org/10.1021/jf203378s

Arratia-Quijada J, Nuño K, Ruíz-Santoyo V, Andrade-Espinoza BA. Nano-encapsulation of probiotics: Need and critical considerations to design new non-dairy probiotic products. J Funct Foods. 2024;116:106192.

https://doi.org/10.1016/j.jff.2024.106192

Zhu Y, Wang Z, Bai L, Deng J, Zhou Q. Biomaterial-based encapsulated probiotics for biomedical applications: Current status and future perspectives. Mater Des. 2021;210:110018.

https://doi.org/10.1016/j.matdes.2021.110018

Lopes SA, Roque-Borda CA, Duarte JL, Di Filippo LD, Borges Cardoso VM, Pavan FR, et al. Delivery Strategies of Probiotics from Nano- and Microparticles: Trends in the Treatment of Inflammatory Bowel Disease—An Overview. Pharmaceutics. 2023;15(11):2600.

https://doi.org/10.3390/pharmaceutics15112600

Afzaal M, Saeed F, Saeed M, Azam M, Hussain S, Mohamed AA, et al. Survival and stability of free and encapsulated probiotic bacteria under simulated gastrointestinal and thermal conditions. Int J Food Prop. 2020;23(1):1899–912.

https://doi.org/10.1080/10942912.2020.1826513

Ningsih HS, Chen LG, Chung R, Chou YJ. An Investigation on Spray-Granulated, Macroporous, Bioactive Glass Microspheres for a Controlled Drug Delivery System. Materials (Basel). 2021;14(11):3112.

https://doi.org/10.3390/ma14113112

Kiran F, Afzaal M, Shahid H, Saeed F, Ahmad A, Ateeq H, et al. Effect of protein-based nanoencapsulation on viability of probiotic bacteria under hostile conditions. Int J Food Prop. 2023;26(1):1698–710.

https://doi.org/10.1080/10942912.2023.2228514

Gutiérrez-Álzate K, Beltrán-Cotta LA, dos Santos Rekowsky BS, Cavalheiro CP, Pereira da Costa M. Micro- and Nanoencapsulation of Probiotics: Exploring Their Impact on Animal-Origin Foods. ACS Food Sci Technol. 2024;4(12):2799–812.

https://doi.org/10.1021/acsfoodscitech.4c00776

Agriopoulou S, Tarapoulouzi M, Varzakas T, Jafari SM. Application of Encapsulation Strategies for Probiotics: From Individual Loading to Co-Encapsulation. Microorganisms. 2023;11(12):2896.

https://doi.org/10.3390/microorganisms11122896

Centurion F, Basit AW, Liu J, Gaisford S, Rahim MA, Kalantar-Zadeh K. Nanoencapsulation for Probiotic Delivery. ACS Nano. 2021;15(12):18653–60.

https://doi.org/10.1021/acsnano.1c09951

Franco RF, Jimenez PC. Pharmacological Applications of Electrospun Nanofibers Loaded with Bioactive Natural Compounds and Extracts: A Systematic Review. Drugs Drug Candidates. 2025;4(1):8.

https://doi.org/10.3390/ddc4010008

Wei L, Zhou D, Kang X. Electrospinning as a novel strategy for the encapsulation of living probiotics in polyvinyl alcohol/silk fibroin. Innov Food Sci Emerg Technol. 2021;71:102726.

https://doi.org/10.1016/j.ifset.2021.102726

Ma J, Xu C, Yu H, Feng Z, Yu W, Gu L, et al. Electro-encapsulation of probiotics in gum Arabic-pullulan blend nanofibres using electrospinning technology. Food Hydrocoll. 2021;111:106381.

https://doi.org/10.1016/j.foodhyd.2020.106381

Yang H, Wen P, Feng K, Zong MH, Lou WY, Wu H. Encapsulation of fish oil in a coaxial electrospun nanofibrous mat and its properties. RSC Adv. 2017;7(24):14939–46.

https://doi.org/10.1039/C7RA00051K

Lancuški A, Abu Ammar A, Avrahami R, Vilensky R, Vasilyev G, Zussman E. Design of starch-formate compound fibers as encapsulation platform for biotherapeutics. Carbohydr Polym. 2017;158:68–76.

https://doi.org/10.1016/j.carbpol.2016.12.003

Heffernan SP, Kelly AL, Mulvihill DM, Lambrich U, Schuchmann HP. Efficiency of a range of homogenisation technologies in the emulsification and stabilization of cream liqueurs. Innov Food Sci Emerg Technol. 2011;12(4):628–34.

https://doi.org/10.1016/j.ifset.2011.07.010

Afzal A, Afzaal M, Saeed F, Shah YA, Raza MA, Khan MH, et al. Milk protein based encapsulation of probiotics and other food material: comprehensive review. Int J Food Prop. 2024;27(1):245–62.

https://doi.org/10.1080/10942912.2024.2304283

Haji F, Cheon J, Baek J, Wang Q, Tam KC. Application of Pickering emulsions in probiotic encapsulation – A review. Curr Res Food Sci. 2022;5:1603–15.

https://doi.org/10.1016/j.crfs.2022.09.013

da Silva SÂD, Batista L da SP, Diniz DS, Nascimento SS da C, Morais NS, de Assis CF, et al. Microencapsulation of Probiotics by Oil-in-Water Emulsification Technique Improves Cell Viability under Different Storage Conditions. Foods. 2023;12(2):252.

https://doi.org/10.3390/foods12020252

Bhatta S, Stevanovic Janezic T, Ratti C. Freeze-Drying of Plant-Based Foods. Foods. 2020;9(1):87.

https://doi.org/10.3390/foods9010087

Raddatz GC, Poletto G, Deus C de, Codevilla CF, Cichoski AJ, Jacob-Lopes E, et al. Use of prebiotic sources to increase probiotic viability in pectin microparticles obtained by emulsification/internal gelation followed by freeze-drying. Food Res Int. 2020;130:108902.

https://doi.org/10.1016/j.foodres.2019.108902

Massounga Bora AF, Li X, Zhu Y, Du L. Improved Viability of Microencapsulated Probiotics in a Freeze-Dried Banana Powder During Storage and Under Simulated Gastrointestinal Tract. Probiotics Antimicrob Proteins. 2019;11(4):1330–9.

https://doi.org/10.1007/s12602-018-9464-1

Behboudi-Jobbehdar S, Soukoulis C, Yonekura L, Fisk I. Optimization of Spray-Drying Process Conditions for the Production of Maximally Viable Microencapsulated L. acidophilus NCIMB 701748. Dry Technol. 2013;31(11):1274–83.

https://doi.org/10.1080/07373937.2013.788509

Bhagwat A, Bhushette P, Annapure US. Spray drying studies of probiotic Enterococcus strains encapsulated with whey protein and maltodextrin. Beni-Suef Univ J Basic Appl Sci. 2020;9(1).

https://doi.org/10.1186/s43088-020-00061-z

Chávarri M, Marañón I, Ares R, Ibáñez FC, Marzo F, Villarán M del C. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int J Food Microbiol. 2010;142(1–2):185–9.

https://doi.org/10.1016/j.ijfoodmicro.2010.06.022

Silva TM da, Barin JS, Lopes EJ, Cichoski AJ, Flores EM de M, Silva C de B da, et al. Development, characterization and viability study of probiotic microcapsules produced by complex coacervation followed by freeze-drying. Cienc Rural. 2019;49(7).

https://doi.org/10.1590/0103-8478cr20180775

Islam F, Amer Ali Y, Imran A, Afzaal M, Zahra SM, Fatima M, et al. Vegetable proteins as encapsulating agents: Recent updates and future perspectives. Food Sci Nutr. 2023;11(4):1705–17.

https://doi.org/10.1002/fsn3.3234

Minj S, Anand S. Whey Proteins and Its Derivatives: Bioactivity, Functionality, and Current Applications. Dairy. 2020;1(3):233–58.

https://doi.org/10.3390/dairy1030016

Feng K, Huangfu L, Liu C, Bonfili L, Xiang Q, Wu H, et al. Electrospinning and Electrospraying: Emerging Techniques for Probiotic Stabilization and Application. Polymers (Basel). 2023;15(10):2402.

https://doi.org/10.3390/polym15102402

Liu B, Hu J, Yao H, Zhang L, Liu H. Improved viability of probiotics encapsulated by layer-by-layer assembly using zein nanoparticles and pectin. Food Hydrocoll. 2023;143:108899.

https://doi.org/10.1016/j.foodhyd.2023.108899

Li S, Fan L, Li S, Sun X, Di Q, Zhang H, et al. Validation of Layer-By-Layer Coating as a Procedure to Enhance Lactobacillus plantarum Survival during In Vitro Digestion, Storage, and Fermentation. J Agric Food Chem. 2023;71(3):1701–12.

https://doi.org/10.1021/acs.jafc.2c07139

Rodrigues FJ, Cedran MF, Bicas JL, Sato HH. Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications – A narrative review. Food Res Int. 2020;137:109682.

https://doi.org/10.1016/j.foodres.2020.109682

Guerra-Valle M, Petzold G, Orellana-Palma P. Optimization of Encapsulation by Ionic Gelation Technique of Cryoconcentrated Solution: A Response Surface Methodology and Evaluation of Physicochemical Characteristics Study. Polymers (Basel). 2022;14(5):1031.

https://doi.org/10.3390/polym14051031

Song LX, Bai L, Xu XM, He J, Pan SZ. Inclusion complexation, encapsulation interaction and inclusion number in cyclodextrin chemistry. Coord Chem Rev. 2009;253(9–10):1276–84.

https://doi.org/10.1016/j.ccr.2008.08.011

Figueiredo J de A, Silva CR de P, Souza Oliveira MF, Norcino LB, Campelo PH, Botrel DA, et al. Microencapsulation by spray chilling in the food industry: Opportunities, challenges, and innovations. Trends Food Sci Technol. 2022;120:274–87.

https://doi.org/10.1016/j.tifs.2021.12.026

Zabihollahi N, Alizadeh A, Almasi H, Hanifian S, Hamishekar H. Development and characterization of carboxymethyl cellulose based probiotic nanocomposite film containing cellulose nanofiber and inulin for chicken fillet shelf life extension. Int J Biol Macromol. 2020;160:409–17.

https://doi.org/10.1016/j.ijbiomac.2020.05.066

Puscaselu RG, Lobiuc A, Dimian M, Covasa M. Alginate: From food industry to biomedical applications and management of metabolic disorders. Polymers (Basel). 2020;12(10):2417.

https://doi.org/10.3390/polym12102417

Du H, Liu M, Yang X, Zhai G. The design of pH-sensitive chitosan-based formulations for gastrointestinal delivery. Drug Discov Today. 2015;20(8):1004–11.

https://doi.org/10.1016/j.drudis.2015.03.002

Voragen AGJ, Coenen GJ, Verhoef RP, Schols HA. Pectin, a versatile polysaccharide present in plant cell walls. Struct Chem. 2009;20(2):263–75.

https://doi.org/10.1007/s11224-009-9442-z

Akin-Ajani OD, Okunlola A. Pharmaceutical Applications of Pectin. In: Pectins – The New-Old Polysaccharides. IntechOpen; 2022. Chapter 13.

https://doi.org/10.5772/intechopen.100152

Aires da Silva D, Cristine Melo Aires G, da Silva Pena R. Gums—Characteristics and Applications in the Food Industry. In: Innovation in the Food Sector Through the Valorization of Food and Agro-Food By-Products. IntechOpen; 2021.

https://doi.org/10.5772/intechopen.95078

BeMiller JN. Gums and Related Polysaccharides. In: Glycoscience. Berlin (Heidelberg): Springer; 2008. p. 1513–33.

https://doi.org/10.1007/978-3-540-30429-6_37

Yang Y, Zhang J, Li C. Delivery of Probiotics with Cellulose-Based Films and Their Food Applications. Polymers (Basel). 2024;16(6):794.

https://doi.org/10.3390/polym16060794

Shokri J, Adibki K. Application of Cellulose and Cellulose Derivatives in Pharmaceutical Industries. In: Cellulose – Medical, Pharmaceutical and Electronic Applications. InTech; 2013. p. 13.

https://doi.org/10.5772/55178

Compart J, Singh A, Fettke J, Apriyanto A. Customizing Starch Properties: A Review of Starch Modifications and Their Applications. Polymers (Basel). 2023;15(16):3491.

https://doi.org/10.3390/polym15163491

Montoya-Yepes DF, Jiménez-Rodríguez AA, Aldana-Porras AE, Velásquez-Holguin LF, Méndez-Arteaga JJ, Murillo-Arango W. Starches in the encapsulation of plant active ingredients: state of the art and research trends. Polym Bull. 2024;81(1):135–63.

https://doi.org/10.1007/s00289-023-04724-6

Zang J, Yin Z, Ouyang H, Liu Y, Liu Z, Yin Z. Advances in the preparation, applications, challenges, and future trends of polysaccharide-based gels as food-grade delivery systems for probiotics: A review. Compr Rev Food Sci Food Saf. 2025;24(1):1–34.

https://doi.org/10.1111/1541-4337.70111

Thomas N, Puluhulawa LE, Cindana Mo'o FR, Rusdin A, Gazzali AM, Budiman A. Potential of Pullulan-Based Polymeric Nanoparticles for Improving Drug Physicochemical Properties and Effectiveness. Polymers (Basel). 2024;16(15):2151.

https://doi.org/10.3390/polym16152151

Agrawal S, Budhwani D, Gurjar P, Telange D, Lambole V. Pullulan based derivatives: synthesis, enhanced physicochemical properties, and applications. Drug Deliv. 2022;29(1):3328–39.

https://doi.org/10.1080/10717544.2022.2144544

Díaz-Montes E. Dextran: Sources, Structures, and Properties. Polysaccharides. 2021;2(3):554–65.

https://doi.org/10.3390/polysaccharides2030033

Yucel Falco C, Falkman P, Risbo J, Cárdenas M, Medronho B. Chitosan-dextran sulfate hydrogels as a potential carrier for probiotics. Carbohydr Polym. 2017;172:175–83.

https://doi.org/10.1016/j.carbpol.2017.04.047

Salimiraad S, Safaeian S, Basti AA, Khanjari A, Nadoushan RM. Characterization of novel probiotic nanocomposite films based on nano chitosan/nano cellulose/gelatin for the preservation of fresh chicken fillets. LWT. 2022;162:113429.

https://doi.org/10.1016/j.lwt.2022.113429

Ramos M, Valdés A, Beltrán A, Garrigós M. Gelatin-Based Films and Coatings for Food Packaging Applications. Coatings. 2016;6(4):41.

https://doi.org/10.3390/coatings6040041

Elzoghby AO, Abo El-Fotoh WS, Elgindy NA. Casein-based formulations as promising controlled release drug delivery systems. J Control Release. 2011;153(3):206–16.

https://doi.org/10.1016/j.jconrel.2011.02.010

Acuña-Avila PE, Cortes-Camargo S, Jiménez-Rosales A. Properties of micro and nano casein capsules used to protect the active components: A review. Int J Food Prop. 2021;24(1):1132–47.

https://doi.org/10.1080/10942912.2021.1953069

Liu G, An D, Li J, Deng S. Zein-based nanoparticles: Preparation, characterization, and pharmaceutical application. Front Pharmacol. 2023;14:1–14.

https://doi.org/10.3389/fphar.2023.1120251

Cheng C, Sun M, Wang L, Wang H, Li L, Yang Q, et al. Zein and soy polysaccharide encapsulation enhances probiotic viability and modulates gut microbiota. LWT. 2024;210:116827.

https://doi.org/10.1016/j.lwt.2024.116827

Nikam A, Sahoo PR, Musale S, Pagar RR, Paiva-Santos AC, Giram PS. A Systematic Overview of Eudragit® Based Copolymer for Smart Healthcare. Pharmaceutics. 2023;15(2):587.

https://doi.org/10.3390/pharmaceutics15020587

Nikam V. Eudragit a versatile polymer: A review. Pharmacologyonline. 2011;1:152–164.

Chakraborty S. Carrageenan for encapsulation and immobilization of flavor, fragrance, probiotics, and enzymes: A review. J Carbohydr Chem. 2017;36(1):1–19.

https://doi.org/10.1080/07328303.2017.1347668

Sormin RBD, Masela A, Idris. Physicochemical properties of carrageenan originated from Lermatang Village, Southwest Maluku District. IOP Conf Ser Earth Environ Sci. 2019;339(1):012053.

https://doi.org/10.1088/1755-1315/339/1/012053

Costa EM, Silva S, Pereira CF, Ribeiro AB, Casanova F, Freixo R, et al. Carboxymethyl Cellulose as a Food Emulsifier: Are Its Days Numbered? Polymers (Basel). 2023;15(10):2408.

https://doi.org/10.3390/polym15102408

Brondi M, Florencio C, Mattoso L, Ribeiro C, Farinas C. Encapsulation of Trichoderma harzianum with nanocellulose/carboxymethyl cellulose nanocomposite. Carbohydr Polym. 2022;295:119876.

https://doi.org/10.1016/j.carbpol.2022.119876

Abdihaji M, Mirzaei Chegeni M, Hadizadeh A, Farrokhzad N, Kheradmand Z, Fakhrfatemi P, et al. Polyvinyl Alcohol (PVA)-Based Nanoniosome for Enhanced in vitro Delivery and Anticancer Activity of Thymol. Int J Nanomedicine. 2023;18:3459–88.

https://doi.org/10.2147/IJN.S401725

Luo Y, De Souza C, Ramachandran M, Wang S, Yi H, Ma Z, et al. Precise oral delivery systems for probiotics: A review. J Control Release. 2022;352:371–84.

https://doi.org/10.1016/j.jconrel.2022.10.030

Wang X, Gao S, Yun S, Zhang M, Peng L, Li Y, et al. Microencapsulating Alginate-Based Polymers for Probiotics Delivery Systems and Their Application. Pharmaceuticals. 2022;15(5):644.

https://doi.org/10.3390/ph15050644

Wang Y, Lu Y. Sodium Alginate-Based Functional Materials toward Sustainable Applications: Water Treatment and Energy Storage. Ind Eng Chem Res. 2023;62(29):11279–304.

https://doi.org/10.1021/acs.iecr.3c01082

Cao L, Lu W, Mata A, Nishinari K, Fang Y. Egg-box model-based gelation of alginate and pectin: A review. Carbohydr Polym. 2020;242:116389.

https://doi.org/10.1016/j.carbpol.2020.116389

Phùng TTT, Đinh HN, Ureña M, Oliete B, Denimal E, Dupont S, et al. Sodium Alginate as a promising encapsulating material for extremely-oxygen sensitive probiotics. Food Hydrocoll. 2025;160:110857.

https://doi.org/10.1016/j.foodhyd.2024.110857

Bevilacqua A, Campaniello D, Speranza B, Racioppo A, Altieri C, Sinigaglia M, et al. Microencapsulation of Saccharomyces cerevisiae into Alginate Beads: A Focus on Functional Properties of Released Cells. Foods. 2020;9(8):1051.

https://doi.org/10.3390/foods9081051

Vega-Carranza AS, Cervantes-Chávez JA, Luna-Bárcenas G, Luna-González A, Diarte-Plata G, Nava-Mendoza R, et al. Alginate microcapsules as delivery and protective systems of Bacillus licheniformis in a simulated shrimp's digestive tract. Aquaculture. 2021;540:736675.

https://doi.org/10.1016/j.aquaculture.2021.736675

Aranaz I, Alcántara AR, Civera MC, Arias C, Elorza B, Heras Caballero A, et al. Chitosan: An Overview of Its Properties and Applications. Polymers (Basel). 2021;13(19):3256.

https://doi.org/10.3390/polym13193256

Meyer-Déru L, David G, Auvergne R. Chitosan chemistry review for living organisms encapsulation. Carbohydr Polym. 2022;295:119877.

https://doi.org/10.1016/j.carbpol.2022.119877

Senthil Kumar S, Sheik Mohideen S. Encapsulation of L. fermentum with chitosan-alginate enhances its bioactivity against acrylamide toxicity in D. mel. Sci Rep. 2025;15(1):11324.

https://doi.org/10.1038/s41598-025-95499-5

Mohammed M, Syeda J, Wasan K, Wasan E. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics. 2017;9(4):53.

https://doi.org/10.3390/pharmaceutics9040053

Wang X, Yu M, Ye J, Liu T, Jian L, Zheng X, et al. Research advances on encapsulation of probiotics with nanomaterials and their repair mechanisms on intestinal barriers. Food Sci Hum Wellness. 2024;13(6):3095–109.

https://doi.org/10.26599/FSHW.2022.9250246

Khosravi Zanjani MA, Ghiassi Tarzi B, Sharifan A, Mohammadi N. Microencapsulation of Probiotics by Calcium Alginate-gelatinized Starch with Chitosan Coating and Evaluation of Survival in Simulated Human Gastro-intestinal Condition. Iran J Pharm Res. 2014;13(3):843–52.

http://www.ncbi.nlm.nih.gov/pubmed/25276184

Peñalva R, Martínez-López AL, Gamazo C, Gonzalez-Navarro CJ, González-Ferrero C, Virto-Resano R, et al. Encapsulation of Lactobacillus plantarum in casein-chitosan microparticles facilitates the arrival to the colon and develops an immunomodulatory effect. Food Hydrocoll. 2023;136:108213.

https://doi.org/10.1016/j.foodhyd.2022.108213

Chandel V, Biswas D, Roy S, Vaidya D, Verma A, Gupta A. Current Advancements in Pectin: Extraction, Properties and Multifunctional Applications. Foods. 2022;11(17):2683.

https://doi.org/10.3390/foods11172683

Galvez-Jiron F, Tang X, Gasaly N, Poncelet D, Wandersleben T, Drusch S, et al. Pectin-based encapsulation systems for the protection of beneficial bacterial species and impact on intestinal barrier function in vitro. Food Hydrocoll. 2025;160:110765.

https://doi.org/10.1016/j.foodhyd.2024.110765

Bordini FW, Rosolen MD, da Luz G de Q, Pohndorf RS, de Oliveira PD, Conceição FR, et al. Development of a microencapsulated probiotic delivery system with whey, xanthan, and pectin. Braz J Microbiol. 2023;54(3):2183–95.

https://doi.org/10.1007/s42770-023-01041-y

Butte K, Momin M, Deshmukh H. Optimisation and In Vivo Evaluation of Pectin Based Drug Delivery System Containing Curcumin for Colon. Int J Biomater. 2014;2014:1–7.

https://doi.org/10.1155/2014/924278

Li M, Jin Y, Wang Y, Meng L, Zhang N, Sun Y, et al. Preparation of Bifidobacterium breve encapsulated in low methoxyl pectin beads and its effects on yogurt quality. J Dairy Sci. 2019;102(6):4832–43.

https://doi.org/10.3168/jds.2018-15597

Robyt JF. Starch: Structure, Properties, Chemistry, and Enzymology. In: Glycoscience. Berlin (Heidelberg): Springer; 2008. p. 1437–72.

https://doi.org/10.1007/978-3-540-30429-6_35

Zhou D, Li D, Liu M, Zhong X, Wei H, Wang Z, et al. Experimental Parameters Affecting Cross-Linking Density and Free-Thaw Stability of Cross-Linked Porous Starch. ES Food Agrofor. 2021;5:20–8.

http://www.espublisher.com/journals/articledetails/493

Noman M, Afzaal M, Saeed F, Ahmad A, Imran A, Akram N, et al. Effect of starch-based nanoparticles on the viability and stability of probiotics under adverse conditions. Int J Food Prop. 2023;26(1):1841–54.

https://doi.org/10.1080/10942912.2023.2236316

Wang B, Sun X, Xu M, Wang F, Liu W, Wu B. Structural characterization and partial properties of dextran produced by Leuconostoc mesenteroides RSG7 from pepino. Front Microbiol. 2023;14:1–15.

https://doi.org/10.3389/fmicb.2023.1108120

Albadran HA, Monteagudo-Mera A, Khutoryanskiy VV, Charalampopoulos D. Development of chitosan-coated agar-gelatin particles for probiotic delivery and targeted release in the gastrointestinal tract. Appl Microbiol Biotechnol. 2020;104(13):5749–57.

https://doi.org/10.1007/s00253-020-10632-w

Sabio L, González A, Ramírez-Rodríguez GB, Gutiérrez-Fernández J, Bañuelo O, Olivares M, et al. Probiotic cellulose: Antibiotic-free biomaterials with enhanced antibacterial activity. Acta Biomater. 2021;124:244–53.

https://doi.org/10.1016/j.actbio.2021.01.039

Aquinas N, Chithra CH, Bhat MR. Progress in bioproduction, characterization and applications of pullulan: a review. Polym Bull. 2024;81(14):12347–82.

https://doi.org/10.1007/s00289-024-05300-2

Elangwe CN, Morozkina SN, Olekhnovich RO, Polyakova VO, Krasichkov A, Yablonskiy PK, et al. Pullulan-Based Hydrogels in Wound Healing and Skin Tissue Engineering Applications: A Review. Int J Mol Sci. 2023;24(5):4962.

https://doi.org/10.3390/ijms24054962

Ajalloueian F, Guerra PR, Bahl MI, Torp AM, Hwu ETe, Licht TR, et al. Multi-layer PLGA-pullulan-PLGA electrospun nanofibers for probiotic delivery. Food Hydrocoll. 2022;123:107112.

https://doi.org/10.1016/j.foodhyd.2021.107112

Kycia K, Chlebowska-Śmigiel A, Szydłowska A, Sokół E, Ziarno M, Gniewosz M. Pullulan as a potential enhancer of Lactobacillus and Bifidobacterium viability in synbiotic low fat yoghurt and its sensory quality. LWT. 2020;128:109414.

https://doi.org/10.1016/j.lwt.2020.109414

Hamdani AM, Wani IA, Bhat NA. Sources, structure, properties and health benefits of plant gums: A review. Int J Biol Macromol. 2019;135:46–61.

https://doi.org/10.1016/j.ijbiomac.2019.05.103

Barak S, Mudgil D, Taneja S. Exudate gums: chemistry, properties and food applications – a review. J Sci Food Agric. 2020;100(7):2828–35.

https://doi.org/10.1002/jsfa.10302

Saeed M, Khanam R, Hafeez H, Ahmad Z, Saleem S, Tariq MR, et al. Viability of Free and Alginate-Carrageenan Gum Coated Lactobacillus acidophilus and Lacticaseibacillus casei in Functional Cottage Cheese. ACS Omega. 2024;9(12):13840–51.

https://doi.org/10.1021/acsomega.3c08588

Pandey S, Senthilguru K, Uvanesh K, Sagiri SS, Behera B, Babu N, et al. Natural gum modified emulsion gel as single carrier for the oral delivery of probiotic-drug combination. Int J Biol Macromol. 2016;92:504–14.

https://doi.org/10.1016/j.ijbiomac.2016.07.053

Lu Y, Luo Q, Chu Y, Tao N, Deng S, Wang L, et al. Application of Gelatin in Food Packaging: A Review. Polymers (Basel). 2022;14(3):436.

https://doi.org/10.3390/polym14030436

Abdel-Aty AM, Barakat AZ, Bassuiny RI, Mohamed SA. Chia gum-gelatin-based encapsulation of chia sprouts phenolic compounds enhanced storage stability, bioavailability, antioxidant, antidiabetic, and antibacterial properties. Sci Rep. 2024;14(1):22023.

https://doi.org/10.1038/s41598-024-71913-2

Hadidi M, Majidiyan N, Jelyani AZ, Moreno A, Hadian Z, Mousavi Khanegah A. Alginate/Fish Gelatin-Encapsulated Lactobacillus acidophilus: A Study on Viability and Technological Quality of Bread during Baking and Storage. Foods. 2021;10(9):2215.

https://doi.org/10.3390/foods10092215

Patarroyo JL, Florez-Rojas JS, Pradilla D, Valderrama-Rincón JD, Cruz JC, Reyes LH. Formulation and characterization of gelatin-based hydrogels for the encapsulation of Kluyveromyces lactis—Applications in packed-bed reactors and probiotics delivery in humans. Polymers (Basel). 2020;12(6):1287.

https://doi.org/10.3390/polym12061287

Rama GR, Dullius D, Agnol WD, Esquerdo VM, Lehn DN, de Souza CFV. Ricotta whey supplemented with gelatin and collagen for the encapsulation of probiotic lactic acid bacteria. Food Sci Technol. 2021;41(3):576–86.

https://doi.org/10.1590/fst.19720

Gandhi S, Roy I. Drug delivery applications of casein nanostructures: A minireview. J Drug Deliv Sci Technol. 2021;66:102843.

https://doi.org/10.1016/j.jddst.2021.102843

Głąb TK, Boratyński J. Potential of Casein as a Carrier for Biologically Active Agents. Top Curr Chem. 2017;375(4):71.

https://doi.org/10.1007/s41061-017-0158-z

Abd El-Salam MH, El-Shibiny S. Preparation and properties of milk proteins-based encapsulated probiotics: a review. Dairy Sci Technol. 2015;95(4):393–412.

https://doi.org/10.1007/s13594-015-0223-8

Yiğit A, Bielska P, Cais-Sokolińska D, Samur G. Whey proteins as a functional food: Health effects, functional properties, and applications in food. J Am Nutr Assoc. 2023;42(8):758–68.

https://doi.org/10.1080/27697061.2023.2169208

Jiang L, Zhang Z, Qiu C, Wen J. A Review of Whey Protein-Based Bioactive Delivery Systems: Design, Fabrication, and Application. Foods. 2024;13(15):2453.

https://doi.org/10.3390/foods13152453

Le NTM, Hieu N Van. Use of whey protein for encapsulation and controlled release of probiotic from protein microencapsule in ex vivo porcine gastrointestinal contents. Vietnam J Sci Technol. 2018;56(2):208.

https://doi.org/10.15625/2525-2518/56/2/9850

de Araújo Etchepare M, Nunes GL, Nicoloso BR, Barin JS, Moraes Flores EM, de Oliveira Mello R, et al. Improvement of the viability of encapsulated probiotics using whey proteins. LWT. 2020;117:108601.

https://doi.org/10.1016/j.lwt.2019.108601

Diệp Huy Vũ P, Rodklongtan A, Chitprasert P. Whey protein isolate-lignin complexes as encapsulating agents for enhanced survival during spray drying, storage, and in vitro gastrointestinal passage of Lactobacillus reuteri KUB-AC5. LWT. 2021;148:111725.

https://doi.org/10.1016/j.lwt.2021.111725

Oleandro E, Stanzione M, Buonocore GG, Lavorgna M. Zein-Based Nanoparticles as Active Platforms for Sustainable Applications: Recent Advances and Perspectives. Nanomaterials. 2024;14(5):414.

https://doi.org/10.3390/nano14050414

Shanthakumar P, Klepacka J, Bains A, Chawla P, Dhull SB, Najda A. The Current Situation of Pea Protein and Its Application in the Food Industry. Molecules. 2022;27(16):5354.

https://doi.org/10.3390/molecules27165354

Babot JD, Argañaraz-Martínez E, Apella MC, Perez Chaia A. Microencapsulation of Probiotics with Soy Protein Isolate and Alginate for the Poultry Industry. Food Bioprocess Technol. 2023;16(7):1478–87.

https://doi.org/10.1007/s11947-023-03007-2

Akanny E, Bourgeois S, Bonhommé A, Commun C, Doleans-Jordheim A, Bessueille F, et al. Development of enteric polymer-based microspheres by spray-drying for colonic delivery of Lactobacillus rhamnosus GG. Int J Pharm. 2020;584:119414.

https://doi.org/10.1016/j.ijpharm.2020.119414

Ansari F, Pourjafar H, Jodat V, Sahebi J, Ataei A. Effect of Eudragit S100 nanoparticles and alginate chitosan encapsulation on the viability of Lactobacillus acidophilus and Lactobacillus rhamnosus. AMB Express. 2017;7(1):144.

https://doi.org/10.1186/s13568-017-0442-x

Rahmati F. Impact of Microencapsulation on Two Probiotic Strains in Alginate Chitosan and Eudragit S100 Under Gastrointestinal and Normal Conditions. Open Biotechnol J. 2019;13(1):59–67.

https://doi.org/10.2174/1874070701913010059

Li Z, Cheong KL, Song B, Yin H, Li Q, Chen J, et al. Preparation of κ-carrageenan oligosaccharides by photocatalytic degradation: Structural characterization and antioxidant activity. Food Chem X. 2024;22:101294.

https://doi.org/10.1016/j.fochx.2024.101294

Álvarez-Viñas M, Souto S, Flórez-Fernández N, Torres MD, Bandín I, Domínguez H. Antiviral Activity of Carrageenans and Processing Implications. Mar Drugs. 2021;19(8):437.

https://doi.org/10.3390/md19080437

Sogut E, Filiz BE, Seydim AC. Whey protein isolate- and carrageenan-based edible films as carriers of different probiotic bacteria. J Dairy Sci. 2022;105(6):4829–42.

https://doi.org/10.3168/jds.2021-21245

Subaşı-Zarbaliyev B, Kutlu G, Törnük F. Polyvinyl alcohol nanoparticles loaded with propolis extract: Fabrication, characterization and antimicrobial activity. ADMET DMPK. 2023;11(4):587–600.

https://doi.org/10.5599/admet.1740

Corona-Escalera AF, Tinajero-Díaz E, García-Reyes RA, Luna-Bárcenas G, Seyfoddin A, Padilla-de la Rosa JD, et al. Enzymatic Crosslinked Hydrogels of Gelatin and Poly (Vinyl Alcohol) Loaded with Probiotic Bacteria as Oral Delivery System. Pharmaceutics. 2022;14(12):2759.

https://doi.org/10.3390/pharmaceutics14122759

Çanga EM, Dudak FC. Improved digestive stability of probiotics encapsulated within poly(vinyl alcohol)/cellulose acetate hybrid fibers. Carbohydr Polym. 2021;264:117990.

https://doi.org/10.1016/j.carbpol.2021.117990

Mojaveri SJ, Hosseini SF, Gharsallaoui A. Viability improvement of Bifidobacterium animalis Bb12 by encapsulation in chitosan/poly(vinyl alcohol) hybrid electrospun fiber mats. Carbohydr Polym. 2020;241:116278.

https://doi.org/10.1016/j.carbpol.2020.116278

Thabet OA, Al Muzini FS, Atiya AM, Alamry KA, Hussein MA, Hoogenboom R. Hydrophobic carboxymethyl cellulose as a clean-up sorbent in the determination of nitrofuran metabolites in animal-fat samples. RSC Adv. 2023;13(47):33221–30.

https://doi.org/10.1039/D3RA07021B

Yousefi N, Zahedi Y, Yousefi A, Hosseinzadeh G, Jekle M. Development of carboxymethyl cellulose-based nanocomposite incorporated with ZnO nanoparticles synthesized by cress seed mucilage as green surfactant. Int J Biol Macromol. 2024;265:130849.

https://doi.org/10.1016/j.ijbiomac.2024.130849

Rahman M, Emon D, Toma M, Nupur A, Karmoker P, Iqbal A, et al. Recent advances in probiotication of fruit and vegetable juices. J Adv Vet Anim Res. 2023;10(3):1.

https://doi.org/10.5455/javar.2023.j706

Pejcz E. Biotechnological Approach of Technological Advancements for Sustainable Probiotic Bread Production. Sustainability. 2024;16(8):3275.

https://doi.org/10.3390/su16083275

Sadeghi A, Ebrahimi M, Assadpour E, Jafari SM. Recent advances in probiotic breads; a market trend in the functional bakery products. Crit Rev Food Sci Nutr. 2024;64(33):13163–74.

https://doi.org/10.1080/10408398.2023.2261056

Altamirano-Fortoul R, Moreno-Terrazas R, Quezada-Gallo A, Rosell CM. Viability of some probiotic coatings in bread and its effect on the crust mechanical properties. Food Hydrocoll. 2012;29(1):166–74.

https://doi.org/10.1016/j.foodhyd.2012.02.015

Reid AA, Champagne CP, Gardner N, Fustier P, Vuillemard JC. Survival in Food Systems of Lactobacillus rhamnosus R011 Microentrapped in Whey Protein Gel Particles. J Food Sci. 2007;72(1):31–7.

https://doi.org/10.1111/j.1750-3841.2006.00222.x

Malmo C, La Storia A, Mauriello G. Microencapsulation of Lactobacillus reuteri DSM 17938 Cells Coated in Alginate Beads with Chitosan by Spray Drying to Use as a Probiotic Cell in a Chocolate Soufflé. Food Bioprocess Technol. 2013;6(3):795–805.

https://doi.org/10.1007/s11947-011-0755-8

de Oliveira Gomes B, de Mesquita Oliveira C, de Marins AR, Gomes RG, Feihrmann AC. Application of microencapsulated probiotic Bifidobacterium animalis ssp. lactis BB-12 in Italian salami. J Food Process Preserv. 2021;45(10):1–12.

https://doi.org/10.1111/jfpp.15841

Camargo VP, Catanio N, Marins AR de, Bergamasco R de C, Gomes RG, Feihrmann AC. The Physicochemical and sensory characteristics of Coppa with Bifidobacterium animalis ssp. lactis (BB12) probiotic. Acta Sci Technol. 2021;43:e55119.

https://doi.org/10.4025/actascitechnol.v43i1.55119

Hussain A, Parveen S, Riaz M, Zia A, Abid Ali S. Probiotics and Vegetable Oil Association: A Review. IOP Conf Ser Earth Environ Sci. 2024;1379(1):012001.

https://doi.org/10.1088/1755-1315/1379/1/012001

Ying D, Schwander S, Weerakkody R, Sanguansri L, Gantenbein-Demarchi C, Augustin MA. Microencapsulated Lactobacillus rhamnosus GG in whey protein and resistant starch matrices: Probiotic survival in fruit juice. J Funct Foods. 2013;5(1):98–105.

https://doi.org/10.1016/j.jff.2012.08.009

Azarkhavarani PR, Ziaee E, Hosseini SMH. Effect of encapsulation on the stability and survivability of Enterococcus faecium in a non-dairy probiotic beverage. Food Sci Technol Int. 2019;25(3):233–42.

https://doi.org/10.1177/1082013218813823

Capela P, Hay TKC, Shah NP. Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Res Int. 2006;39(2):203–11.

https://doi.org/10.1016/j.foodres.2005.07.007

Hernández-Barrueta T, Martínez-Bustos F, Castaño-Tostado E, Lee Y, Miller MJ, Amaya-Llano SL. Encapsulation of probiotics in whey protein isolate and modified huauzontle's starch: An approach to avoid fermentation and stabilize polyphenol compounds in a ready-to-drink probiotic green tea. LWT. 2020;124:109131.

https://doi.org/10.1016/j.lwt.2020.109131

Qaziyani SD, Pourfarzad A, Gheibi S, Nasiraie LR. Effect of encapsulation and wall material on the probiotic survival and physicochemical properties of synbiotic chewing gum: study with univariate and multivariate analyses. Heliyon. 2019;5(7):e02144.

https://doi.org/10.1016/j.heliyon.2019.e02144

Dafe A, Etemadi H, Zarredar H, Mahdavinia GR. Development of novel carboxymethyl cellulose/κ-carrageenan blends as an enteric delivery vehicle for probiotic bacteria. Int J Biol Macromol. 2017;97:299–307.

https://doi.org/10.1016/j.ijbiomac.2017.01.016

Su R, Zhu XL, Fan DD, Mi Y, Yang CY, Jia X. Encapsulation of probiotic Bifidobacterium longum BIOMA 5920 with alginate-human-like collagen and evaluation of survival in simulated gastrointestinal conditions. Int J Biol Macromol. 2011;49(5):979–84.

https://doi.org/10.1016/j.ijbiomac.2011.08.018

Fareez IM, Lim SM, Mishra RK, Ramasamy K. Chitosan coated alginate-xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum LAB12. Int J Biol Macromol. 2015;72:1419–28.

https://doi.org/10.1016/j.ijbiomac.2014.10.054

Khorasani AC, Shojaosadati SA. Bacterial nanocellulose-pectin bionanocomposites as prebiotics against drying and gastrointestinal condition. Int J Biol Macromol. 2016;83:9–18.

https://doi.org/10.1016/j.ijbiomac.2015.11.041

Bu W, McClements DJ, Zhang Z, Zhang R, Jin Z, Chen L. Encapsulation method of probiotic embedded delivery system and its application in food. Food Hydrocoll. 2025;159:110625.

https://doi.org/10.1016/j.foodhyd.2024.110625

Peredo AG, Beristain CI, Pascual LA, Azuara E, Jimenez M. The effect of prebiotics on the viability of encapsulated probiotic bacteria. LWT. 2016;73:191–6.

https://doi.org/10.1016/j.lwt.2016.06.021

Yasmin I, Saeed M, Pasha I, Zia MA. Development of Whey Protein Concentrate-Pectin-Alginate Based Delivery System to Improve Survival of B. longum BL-05 in Simulated Gastrointestinal Conditions. Probiotics Antimicrob Proteins. 2019;11(2):413–26.

https://doi.org/10.1007/s12602-018-9407-x

Afzaal M, Saeed F, Arshad MU, Nadeem MT, Saeed M, Tufail T. The Effect of Encapsulation on The Stability of Probiotic Bacteria in Ice Cream and Simulated Gastrointestinal Conditions. Probiotics Antimicrob Proteins. 2019;11(4):1348–54.

https://doi.org/10.1007/s12602-018-9485-9

Motalebi Moghanjougi Z, Rezazadeh Bari M, Alizadeh Khaledabad M, Amiri S, Almasi H. Microencapsulation of Lactobacillus acidophilus LA‐5 and Bifidobacterium animalis BB‐12 in pectin and sodium alginate: A comparative study on viability, stability, and structure. Food Sci Nutr. 2021;9(9):5103–11.

https://doi.org/10.1002/fsn3.2470

Andrade Lopes LA, de Siqueira Ferraz Carvalho R, Santos Magalhães N, Madruga MS, Alves Aguiar Athayde AJ, Araújo Portela I, et al. Microencapsulation of Lactobacillus acidophilus La-05 and incorporation in vegan milks: Physicochemical characteristics and survival during storage, exposure to stress conditions, and simulated gastrointestinal digestion. Food Res Int. 2020;135:109295.

https://doi.org/10.1016/j.foodres.2020.109295

Rokka S, Rantamäki P. Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur Food Res Technol. 2010;231(1):1–12.

https://doi.org/10.1007/s00217-010-1246-2

Saiz-Gonzalo G, Arroyo-Moreno S, McSweeney S, Bleiel SB. Pea protein microencapsulation improves probiotic survival during gastrointestinal digestion. Int J Food Sci Technol. 2025;60(2):vvaf154.

https://doi.org/10.1093/ijfood/vvaf154

Beikzadeh S, Sadeghi A, Khezerlou A, Assadpour E. Enrichment of bread with encapsulated probiotics as a functional product containing bioactive compounds: Principles, outcomes, and challenges. Future Foods. 2025;12:100732.

https://doi.org/10.1016/j.fufo.2025.100732

Arihara K. Strategies for designing novel functional meat products. Meat Sci. 2006;74(1):219–29.

https://doi.org/10.1016/j.meatsci.2006.04.028

Munekata PES, Pateiro M, Tomasevic I, Domínguez R, da Silva Barretto AC, Santos EM, et al. Functional fermented meat products with probiotics—A review. J Appl Microbiol. 2022;133(1):91–103.

https://doi.org/10.1111/jam.15337

Deshpande HW, Katke SD, Poshadri A. Influence of probiotics on physico-chemical and organoleptic characteristics of sweet orange juice. J Environ Biol. 2022;43(1):170–6.

https://doi.org/10.22438/jeb/43/1/MRN-1940

Vivek KB. Use of encapsulated probiotics in dairy based foods. Int J Food Agric Vet Sci. 2013;3(1):188–99.

Iravani S, Korbekandi H, Mirmohammadi SV. Technology and potential applications of probiotic encapsulation in fermented milk products. J Food Sci Technol. 2015;52(8):4679–96.

https://doi.org/10.1007/s13197-014-1516-2

Mortazavian AM, Ehsani MR, Azizi A, Razavi SH, Mousavi SM, Sohrabvandi S, et al. Viability of calcium-alginate microencapsulated probiotic bacteria in Iranian yogurt drink (Doogh) during refrigerated storage and under simulated gastrointestinal conditions. Aust J Dairy Technol. 2008;63(1):25–30.

Küçükgöz K, Trząskowska M. Nondairy Probiotic Products: Functional Foods That Require More Attention. Nutrients. 2022;14(4):753.

https://doi.org/10.3390/nu14040753

Kumar S, Rattu G, Mitharwal S, Chandra A, Kumar S, Kaushik A, et al. Trends in non-dairy-based probiotic food products: Advances and challenges. J Food Process Preserv. 2022;46(9).

https://doi.org/10.1111/jfpp.16578

Yoha KS, Nida S, Dutta S, Moses JA, Anandharamakrishnan C. Targeted Delivery of Probiotics: Perspectives on Research and Commercialization. Probiotics Antimicrob Proteins. 2022;14(1):15–48.

https://doi.org/10.1007/s12602-021-09791-7

Ibrahim IM. Advances in Polysaccharide-Based Oral Colon-Targeted Delivery Systems: The Journey So Far and the Road Ahead. Cureus. 2023;15(1):1–18.

https://doi.org/10.7759/cureus.33636

Ji C, Li D, Liang Y, Luo Y. Co-encapsulation of probiotics with functional components: design strategies, synergistic mechanisms, biomedical applications, and challenges for industrialization. J Mater Chem B. 2025;13(41):13122–53.

https://doi.org/10.1039/D5TB01747E

Razavi S, Janfaza S, Tasnim N, Gibson DL, Hoorfar M. Nanomaterial-based encapsulation for controlled gastrointestinal delivery of viable probiotic bacteria. Nanoscale Adv. 2021;3(10):2699–709.

https://doi.org/10.1039/D0NA00952K

Li J, Sun M, Liu L, Yang W, Sun A, Yu J, et al. Nanoprobiotics for Remolding the Pro-inflammatory Microenvironment and Microbiome in the Treatment of Colitis. Nano Lett. 2023;23(18):8593–601.

https://doi.org/10.1021/acs.nanolett.3c02408

Encapsulated probiotics and nanoprobiotics – Biocompatible materials, processing technologies, and applications: A review

Published

19-12-2025

Issue

Section

Review

Categories

How to Cite

1.
Encapsulated probiotics and nanoprobiotics – Biocompatible materials, processing technologies, and applications: A review. Biomol Biomed [Internet]. 2025 Dec. 19 [cited 2025 Dec. 26];. Available from: https://www.bjbms.org/ojs/index.php/bjbms/article/view/13322