Long noncoding RNA RP11-70C1.3 confers chemoresistance of breast cancer cells through miR-6736-3p/NRP-1 axis

  • Lansheng Zhang Department of Radiotherapy, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
  • Xia Zheng Department of Radiotherapy, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
  • Anqi Shen Department of Radiotherapy, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
  • Daojin Hua Department of Radiotherapy, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
  • Panrong Zhu Department of Radiotherapy, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
  • Caihong Li Department of Radiotherapy, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
  • Zhengxiang Han Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
Keywords: Breast cancer, RP11-70C1.3, chemoresistance, NRP-1, miR-6736-3p

Abstract

Chemoresistance remains a major obstacle for improving the clinical outcome of patients with breast cancer. Recently, long noncoding RNAs (lncRNAs) have been implicated in breast cancer chemoresistance. However, the function and underlying mechanism are still largely unknown. Using lncRNA microarray, we identified 122 upregulated and 475 downregulated lncRNAs that might be related to the breast cancer chemoresistance. Among them, RP11-70C1.3 was one of the most highly expressed lncRNAs. In breast cancer patients, high RP11-70C1.3 expression predicted poor prognosis. Knockdown of RP11-70C1.3 inhibited the multidrug resistance of breast cancer cells in vitro and in vivo. Further investigations revealed that RP11-70C1.3 functioned as a competing endogenous RNA (ceRNA) for miR-6736-3p to increase NRP-1 expression. Notably, the rescue experiments showed that both miR-6736-3p inhibitor and NRP-1 overexpression could partly reverse the suppressive influence of RP11-70C1.3 knockdown on breast cancer chemoresistance. In conclusion, our study indicated that lncRNA RP11-70C1.3 regulated NRP-1 expression by sponging miR-6736-3p to confer chemoresistance of breast cancer cells. RP11-70C1.3 might be a potential therapeutic target in enhancing the clinical efficacy of chemotherapy in breast cancer.

Downloads

Download data is not yet available.

Author Biography

Anqi Shen, Department of Radiotherapy, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.

Department of Radiotherapy

Long noncoding RNA RP11-70C1.3 confers chemoresistance of breast cancer cells through miR-6736-3p/NRP-1 axis
Published
2021-06-29
How to Cite
1.
Zhang L, Zheng X, Shen A, Hua D, Zhu P, Li C, Han Z. Long noncoding RNA RP11-70C1.3 confers chemoresistance of breast cancer cells through miR-6736-3p/NRP-1 axis. Bosn J of Basic Med Sci [Internet]. 2021Jun.29 [cited 2021Jul.25];. Available from: https://www.bjbms.org/ojs/index.php/bjbms/article/view/5803
Section
Molecular Biology