Phenolic-derived compounds in osteoporosis–Mechanisms, clinical evidence, and drug delivery: A review
DOI:
https://doi.org/10.17305/bb.2025.13301Keywords:
Osteoporosis, bone remodelling, phenolic compounds, clinical findings, bioavailability, drug delivery systemAbstract
Osteoporosis is a degenerative skeletal disorder characterized by reduced bone mass and the deterioration of bone microarchitecture, resulting in an increased risk of fractures. Its development is driven by an imbalance in bone remodeling, where osteoclastic bone resorption surpasses osteoblastic bone formation. Factors such as oxidative stress, chronic inflammation, ferroptosis, and hormonal changes, particularly estrogen deficiency in postmenopausal women, contribute to this imbalance. Metabolites derived from phenolic compounds have emerged as promising natural agents for osteoporosis prevention due to their antioxidant, anti-inflammatory, and hormone-modulating properties. Key phenolic groups, including flavonoids (quercetin), isoflavones (genistein and daidzein), and stilbenes (resveratrol), have demonstrated significant osteoprotective effects by regulating receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin (OPG) signaling, activating Wnt and β-catenin pathways, and suppressing inflammatory cytokines. Clinical findings indicate that these compounds may enhance bone mineral density and modulate bone turnover markers in populations at risk for osteoporosis. However, their clinical application is limited by low bioavailability and rapid metabolism. Advances in drug delivery systems, including nanoencapsulation, liposomal formulations, and prodrug design, have improved stability, absorption, and targeted delivery to bone, thereby enhancing therapeutic potential while minimizing systemic effects. This review discusses the molecular mechanisms underlying osteoporosis, emphasizing oxidative and hormonal dysregulation, and highlights the therapeutic relevance of phenolic compounds. Additionally, it summarizes recent clinical observations and formulation strategies aimed at enhancing therapeutic efficacy. Overall, phenolic compounds represent promising plant-based strategies for the prevention and management of osteoporosis.
Citations
Downloads
References
Zárate-Martínez W, Moreno-León K, González-Sandoval DC, Avendaáo-Abarca VH, Delgado AT, Ramírez HAG. Importance of Secondary Metabolites in Plant Defense Mechanisms. Sustainable Agricultural Production Systems: Apple Academic Press; 2025. p. 47–60.
https://doi.org/10.1201/9781032684239-4
Chauhan R, Sirasanagandla SR, Veeraraghavan VP, Jayaraman S, Chandrasekar S. Therapeutic Potential of Flavonoids in Diabetes Mellitus Management: Molecular Insights and the Future Directions for Drug Design. Current drug discovery technologies.
Laadraoui J, Kabdy H, Oufquir S, Aitlarradia M, Agouram F, Ait Baba A, et al. The Therapeutic Role of Secondary Metabolites in Neurodegenerative and Inflammatory Diseases, Mechanisms, and Potential Applications. Secondary Metabolites and Their Applications in Various Diseases: IGI Global Scientific Publishing; 2025. p. 129–92.
https://doi.org/10.4018/979-8-3693-9112-9.ch005
Anwer EK, Ajagbe M, Sherif M, Musaibah AS, Mahmoud S, ElBanbi A, et al. Gut microbiota secondary metabolites: key roles in GI tract cancers and infectious diseases. Biomedicines. 2025;13(1):100.
https://doi.org/10.3390/biomedicines13010100
Karimi SM, Bayat M, Rahimi R. Plant-derived natural medicines for the management of osteoporosis: A comprehensive review of clinical trials. Journal of Traditional and Complementary Medicine. 2024;14(1):1–18.
https://doi.org/10.1016/j.jtcme.2023.08.001
Marcucci G, Domazetovic V, Nediani C, Ruzzolini J, Favre C, Brandi ML. Oxidative stress and natural antioxidants in osteoporosis: novel preventive and therapeutic approaches. Antioxidants. 2023;12(2):373.
https://doi.org/10.3390/antiox12020373
Phruetthiphat O-a, Kanokwongnuwat W, Satravaha Y, Pinijprapa P, Chaichankul C, Gajaseni P. Functional outcomes following hip fracture with concurrent vertebral fracture within a fracture liaison service. Scientific Reports. 2025;15(1):25417.
https://doi.org/10.1038/s41598-025-11387-y
Andaloro S, Cacciatore S, Risoli A, Comodo RM, Brancaccio V, Calvani R, et al. Hip Fracture as a Systemic Disease in Older Adults: A Narrative Review on Multisystem Implications and Management. Medical Sciences. 2025;13(3):89.
https://doi.org/10.3390/medsci13030089
Feng Z-J, Xu Q-D, Chen N, Zeng W-C. Effects and structure-activity relationship of phenolic compounds with different structures on the physicochemical properties of casein and its action mechanism. Food Hydrocolloids. 2025:111606.
https://doi.org/10.1016/j.foodhyd.2025.111606
Majumder S, Jana P, Pradhan SR, Tripathi S, Manna M, Pradhan P, et al. Sulfides, Polyphenolics, and Phytoestrogens as Nutraceuticals. Dietary Supplements and Nutraceuticals: Springer; 2025. p. 1–33.
https://doi.org/10.1007/978-981-97-9936-7_6-1
Šovljanski O, Cvetanović Kljakić A, Saveljić A, Tomić A. Bioactivity and Bioavailability of Phenols from Plants. Natural Products: Phytochemistry, Botany, Metabolism of Alkaloids, Phenolics and Terpenes: Springer; 2025. p. 1–44.
https://doi.org/10.1007/978-3-642-36202-6_231-1
Tang S, Wang B, Liu X, Xi W, Yue Y, Tan X, et al. Structural insights and biological activities of flavonoids: Implications for novel applications. Food Frontiers. 2025;6(1):218–47.
https://doi.org/10.1002/fft2.494
Ma ZF, Fu C, Lee YY. The Modulatory Role of Bioactive Compounds in Functional Foods on Inflammation and Metabolic Pathways in Chronic Diseases. Foods. 2025;14(5):821.
https://doi.org/10.3390/foods14050821
Girgih A, Ichoron N, Akinsola A, Igoli J. Free radicals and antioxidant quenching properties of plant phytochemicals in the management of oxidative stress. Plant food phytochemicals and bioactive compounds in nutrition and health: CRC Press; 2024. p. 202–40.
https://doi.org/10.1201/9781003340201-9
Mendonça EL, Xavier JA, Fragoso MB, Silva MO, Escodro PB, Oliveira AC, et al. E-Stilbenes: General chemical and biological aspects, potential pharmacological activity based on the Nrf2 pathway. Pharmaceuticals. 2024;17(2):232.
https://doi.org/10.3390/ph17020232
Radeva L, Yoncheva K. Resveratrol-A promising therapeutic agent with problematic properties. Pharmaceutics. 2025;17(1):134.
https://doi.org/10.3390/pharmaceutics17010134
Xiang J-C, Fung C, Wang Q, Zhu J. Taming the radical cation intermediate enabled one-step access to structurally diverse lignans. Nature Communications. 2022;13(1):3481.
https://doi.org/10.1038/s41467-022-31000-4
Bach Knudsen KE, Nørskov N, Bolvig AK, Hedemann MS, Lærke HN. Lignans. Dietary Polyphenols: Their Metabolism and Health Effects. 2020:365–406.
https://doi.org/10.1002/9781119563754.ch10
Jang WY, Kim M-Y, Cho JY. Antioxidant, anti-inflammatory, anti-menopausal, and anti-cancer effects of lignans and their metabolites. International journal of molecular sciences. 2022;23(24):15482.
https://doi.org/10.3390/ijms232415482
Zhao Y, Wang J, Xu L, Xu H, Yan Y, Zhao H, et al. Beyond Bone Loss: A Biology Perspective on Osteoporosis Pathogenesis, Multi-Omics Approaches, and Interconnected Mechanisms. Biomedicines. 2025;13(6):1443.
https://doi.org/10.3390/biomedicines13061443
Mohanty S, Sahu A, Mukherjee T, Kispotta S, Mal P, Gupta M, et al. Molecular mechanisms and treatment strategies for estrogen deficiency-related and glucocorticoid-induced osteoporosis: a comprehensive review. Inflammopharmacology. 2025:1–37.
https://doi.org/10.1007/s10787-025-01749-3
Daponte V, Henke K, Drissi H. Current perspectives on the multiple roles of osteoclasts: mechanisms of osteoclast-osteoblast communication and potential clinical implications. Elife. 2024;13:e95083.
https://doi.org/10.7554/eLife.95083
Prideaux M, Wright CS, Noonan ML, Yi X, Clinkenbeard EL, Mevel E, et al. Generation of two multipotent mesenchymal progenitor cell lines capable of osteogenic, mature osteocyte, adipogenic, and chondrogenic differentiation. Scientific reports. 2021;11(1):22593.
https://doi.org/10.1038/s41598-021-02060-1
Margiotta A. Coupling of Intracellular Calcium Homeostasis and Formation and Secretion of Matrix Vesicles: Their Role in the Mechanism of Biomineralization. Cells. 2025;14(10):733.
https://doi.org/10.3390/cells14100733
Zhang S, Gao M, Song S, Zhao T, Zhou B, Wang H, et al. Unraveling the Mechanisms That Regulate Osteoclast Differentiation: A Review of Current Advances. genesis. 2025;63(1):e70012.
https://doi.org/10.1002/dvg.70012
Choi JUA, Kijas AW, Lauko J, Rowan AE. The mechanosensory role of osteocytes and implications for bone health and disease states. Frontiers in Cell and Developmental Biology. 2022;9:770143.
https://doi.org/10.3389/fcell.2021.770143
Almuraikhi N. Molecular Signaling Pathways Governing Osteoblast Differentiation of Mesenchymal Stem Cells. J Clin Med Img. 2025;8(7):1–8.
Xing S, Ma Y, Song B, Bai M, Wang K, Song W, et al. Irisin reshapes bone metabolic homeostasis to delay age-related osteoporosis by regulating the multipotent differentiation of BMSCs via Wnt pathway. Frontiers in Molecular Biosciences. 2025;11:1524978.
https://doi.org/10.3389/fmolb.2024.1524978
Wang L, Ruan M, Bu Q, Zhao C. Signaling pathways driving MSC osteogenesis: mechanisms, regulation, and translational applications. International Journal of Molecular Sciences. 2025;26(3):1311.
https://doi.org/10.3390/ijms26031311
Ghasemi N, Azizi H, Skutella T. Exploring the Multifaceted Role of Wnt Signaling: From Stemness, Development, and Disease to Therapeutics. 2025.
https://doi.org/10.5772/intechopen.1010865
Xue H-Y, Shen X-L, Wang Z-H, Bi H-C, Xu H-G, Wu J, et al. Research progress on mesenchymal stem cell-derived exosomes in the treatment of osteoporosis induced by knee osteoarthritis. International Journal of Molecular Medicine. 2025;56(4):160.
https://doi.org/10.3892/ijmm.2025.5601
Chen P, Wu L, Zhang S, Jin Q, Sun K. Combining TNF-α silencing with Wnt3a overexpression: a promising gene therapy for particle-induced periprosthetic osteolysis. Frontiers in Cell and Developmental Biology. 2025;13:1511577.
https://doi.org/10.3389/fcell.2025.1511577
Weivoda MM, Ruan M, Hachfeld CM, Pederson L, Howe A, Davey RA, et al. Wnt signaling inhibits osteoclast differentiation by activating canonical and noncanonical cAMP/PKA pathways. Journal of Bone and Mineral Research. 2016;31(1):65–75.
https://doi.org/10.1002/jbmr.2599
Wang F, Tarkkonen K, Nieminen‐Pihala V, Nagano K, Majidi RA, Puolakkainen T, et al. Mesenchymal cell‐derived Juxtacrine Wnt1 signaling regulates osteoblast activity and osteoclast differentiation. Journal of Bone and Mineral Research. 2019;34(6):1129–42.
https://doi.org/10.1002/jbmr.3680
Magro-Lopez E, Muñoz-Fernández MÁ. The role of BMP signaling in female reproductive system development and function. International journal of molecular sciences. 2021;22(21):11927.
https://doi.org/10.3390/ijms222111927
Firdauzy MAB, Ahmad NB, Setiawatie EM, Rahmatari B, Roestamadji RI. BMP2 and Osterix Interaction in Osteoblastogenesis: An Article Review. Malaysian Journal of Medicine & Health Sciences. 2024;20.
Liu C, Zhang J, Ye Z, Luo J, Peng B, Wang Z. Research on the role and mechanism of the PI3K/Akt/mTOR signalling pathway in osteoporosis. Frontiers in Endocrinology. 2025;16:1541714.
https://doi.org/10.3389/fendo.2025.1541714
Wang G, Luo J, Qiao Y, Zhang D, Liu Y, Zhang W, et al. AMPK/mTOR pathway is involved in autophagy induced by magnesium-incorporated TiO2 surface to promote BMSC osteogenic differentiation. Journal of functional biomaterials. 2022;13(4):221.
https://doi.org/10.3390/jfb13040221
Kitazawa S, Haraguchi R, Kitazawa R. Roles of osteoclasts in pathological conditions. Pathology International. 2025;75(2):55–68.
https://doi.org/10.1111/pin.13500
Lu Z, Xiao P, Liu S, Huang C, Li W, Mao Y, et al. Osteoimmunology: Crosstalk Between T Cells and Osteoclasts in Osteoporosis. Clinical Reviews in Allergy & Immunology. 2025;68(1):41.
https://doi.org/10.1007/s12016-025-09046-1
Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Materials Science and Engineering: C. 2021;130:112466.
https://doi.org/10.1016/j.msec.2021.112466
James AW, LaChaud G, Shen J, Asatrian G, Nguyen V, Zhang X, et al. A review of the clinical side effects of bone morphogenetic protein-2. Tissue Engineering Part B: Reviews. 2016;22(4):284–97.
https://doi.org/10.1089/ten.teb.2015.0357
Luo J, Li L, Shi W, Xu K, Shen Y, Dai B. Oxidative stress and inflammation: roles in osteoporosis. Frontiers in Immunology. 2025;16:1611932.
https://doi.org/10.3389/fimmu.2025.1611932
Liu W, Xie G, Yuan G, Xie D, Lian Z, Lin Z, et al. 6′-O-Galloylpaeoniflorin Attenuates Osteoclastogenesis and Relieves Ovariectomy-Induced Osteoporosis by Inhibiting Reactive Oxygen Species and MAPKs/c-Fos/NFATc1 Signaling Pathway. Frontiers in Pharmacology. 2021;12:641277.
https://doi.org/10.3389/fphar.2021.641277
Wang B, Wang Y, Zhang J, Hu C, Jiang J, Li Y, et al. ROS-induced lipid peroxidation modulates cell death outcome: mechanisms behind apoptosis, autophagy, and ferroptosis. Archives of toxicology. 2023;97(6):1439–51.
https://doi.org/10.1007/s00204-023-03476-6
Li YP, Wu B, Liang J, Li F. Isopsoralen ameliorates H2O2-induced damage in osteoblasts via activating the Wnt/β-catenin pathway. Experimental and Therapeutic Medicine. 2019;18(3):1899–906.
https://doi.org/10.3892/etm.2019.7741
Li Y, Yue G, Yu S, Liu Z, Cao Y, Wang X. Extracellular vesicles derived from H2O2-stimulated adipose-derived stem cells alleviate senescence in diabetic bone marrow mesenchymal stem cells and restore their osteogenic capacity. Drug Design, Development and Therapy. 2024:2103–24.
https://doi.org/10.2147/DDDT.S454509
Yang K, Cao F, Qiu S, Jiang W, Tao L, Zhu Y. Metformin promotes differentiation and attenuates H2O2-induced oxidative damage of osteoblasts via the PI3K/AKT/Nrf2/HO-1 pathway. Frontiers in Pharmacology. 2022;13:829830.
https://doi.org/10.3389/fphar.2022.829830
Yoon H, Park SG, Kim H-J, Shin H-R, Kim K-T, Cho Y-D, et al. Nicotinamide enhances osteoblast differentiation through activation of the mitochondrial antioxidant defense system. Experimental & Molecular Medicine. 2023;55(7):1531–43.
https://doi.org/10.1038/s12276-023-01041-w
Zuo X, Wei X, Ju C, Wang X, Zhang Z, Ma Y, et al. Protective Effect of Photobiomodulation against Hydrogen Peroxide‐Induced Oxidative Damage by Promoting Autophagy through Inhibition of PI3K/AKT/mTOR Pathway in MC3T3‐E1 Cells. Oxidative Medicine and Cellular Longevity. 2022;2022(1):7223353.
https://doi.org/10.1155/2022/7223353
Li D-Z, Zhang Q-X, Dong X-X, Li H-D, Ma X. Treatment with hydrogen molecules prevents RANKL-induced osteoclast differentiation associated with inhibition of ROS formation and inactivation of MAPK, AKT and NF-kappa B pathways in murine RAW264.7 cells. Journal of Bone and Mineral Metabolism. 2014;32(5):494–504.
https://doi.org/10.1007/s00774-013-0530-1
Chen X, Li J, Kang R, Klionsky DJ, Tang D. Ferroptosis: machinery and regulation. Autophagy. 2021;17(9):2054–81.
https://doi.org/10.1080/15548627.2020.1810918
Zhang H, Wang A, Li G, Zhai Q, Huang Z, Wang X, et al. Osteoporotic bone loss from excess iron accumulation is driven by NOX4-triggered ferroptosis in osteoblasts. Free Radical Biology and Medicine. 2023;198:123–36.
https://doi.org/10.1016/j.freeradbiomed.2023.01.026
Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y, Vergely C. Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis. International journal of molecular sciences. 2022;24(1):449.
https://doi.org/10.3390/ijms24010449
Fujii J, Homma T, Kobayashi S. Ferroptosis caused by cysteine insufficiency and oxidative insult. Free radical research. 2020;54(11–12):969–80.
https://doi.org/10.1080/10715762.2019.1666983
Chen Y, Fang Z-M, Yi X, Wei X, Jiang D-S. The interaction between ferroptosis and inflammatory signaling pathways. Cell death & disease. 2023;14(3):205.
https://doi.org/10.1038/s41419-023-05716-0
Tang Y, Su S, Yu R, Liao C, Dong Z, Jia C, et al. Unraveling ferroptosis in osteogenic lineages: implications for dysregulated bone remodeling during periodontitis progression. Cell Death Discovery. 2024;10(1):195.
https://doi.org/10.1038/s41420-024-01969-6
Zhang F-F, Hao Y, Zhang K-X, Yang J-J, Zhao Z-Q, Liu H-J, et al. Interplay between mesenchymal stem cells and macrophages: Promoting bone tissue repair. World Journal of Stem Cells. 2024;16(4):375.
https://doi.org/10.4252/wjsc.v16.i4.375
Bi CS, Wang J, Qu HL, Li X, Tian BM, Ge S, et al. Calcitriol suppresses lipopolysaccharide‐induced alveolar bone damage in rats by regulating T helper cell subset polarization. Journal of periodontal research. 2019;54(6):612–23.
https://doi.org/10.1111/jre.12661
Umur E, Bulut SB, Yiğit P, Bayrak E, Arkan Y, Arslan F, et al. Exploring the role of hormones and cytokines in osteoporosis development. Biomedicines. 2024;12(8):1830.
https://doi.org/10.3390/biomedicines12081830
Melville KM, Kelly NH, Surita G, Buchalter DB, Schimenti JC, Main RP, et al. Effects of deletion of ERα in osteoblast‐lineage cells on bone mass and adaptation to mechanical loading differ in female and male mice. Journal of Bone and Mineral Research. 2015;30(8):1468–80.
https://doi.org/10.1002/jbmr.2488
Dirkes RK, Winn NC, Jurrissen TJ, Lubahn DB, Vieira-Potter VJ, Padilla J, et al. Global estrogen receptor-α knockout has differential effects on cortical and cancellous bone in aged male mice. Facets. 2020;5(1):328–48.
https://doi.org/10.1139/facets-2019-0043
Khare S, Dewangan RP, Kumar A. Structure-activity relationship of flavonoids: Recent updates. The chemistry inside spices & herbs: research and development: Bentham Science Publishers; 2022. p. 237–59.
https://doi.org/10.2174/9789815039566122010011
Ramesh P, Jagadeesan R, Sekaran S, Dhanasekaran A, Vimalraj S. Flavonoids: classification, function, and molecular mechanisms involved in bone remodelling. Frontiers in Endocrinology. 2021;12:779638.
https://doi.org/10.3389/fendo.2021.779638
Frenț O-D, Stefan L, Morgovan CM, Duteanu N, Dejeu IL, Marian E, et al. A systematic review: quercetin-secondary metabolite of the flavonol class, with multiple health benefits and low bioavailability. International Journal of Molecular Sciences. 2024;25(22):12091.
https://doi.org/10.3390/ijms252212091
Zhou Y, Wu Y, Jiang X, Zhang X, Xia L, Lin K, et al. The effect of quercetin on the osteogenesic differentiation and angiogenic factor expression of bone marrow-derived mesenchymal stem cells. PloS one. 2015;10(6):e0129605.
https://doi.org/10.1371/journal.pone.0129605
Xiao J, Zhang G, Chen B, He Q, Mai J, Chen W, et al. Quercetin protects against iron overload-induced osteoporosis through activating the Nrf2/HO-1 pathway. Life Sciences. 2023;322:121326.
https://doi.org/10.1016/j.lfs.2022.121326
Kim DS, Takai H, Arai M, Araki S, Mezawa M, Kawai Y, et al. Effects of quercetin and quercetin 3‐glucuronide on the expression of bone sialoprotein gene. Journal of cellular biochemistry. 2007;101(3):790–800.
https://doi.org/10.1002/jcb.21233
Siddiqui JA, Swarnkar G, Sharan K, Chakravarti B, Gautam AK, Rawat P, et al. A naturally occurring rare analog of quercetin promotes peak bone mass achievement and exerts anabolic effect on osteoporotic bone. Osteoporosis International. 2011;22(12):3013–27.
https://doi.org/10.1007/s00198-010-1519-4
Guo C, Yang R-J, Jang K, Zhou X-l, Liu Y-z. Protective Effects of Pretreatment with Quercetin Against Lipopolysaccharide-Induced Apoptosis and the Inhibition of Osteoblast Differentiation via the MAPK and Wnt/ß-Catenin Pathways in MC3T3-E1 Cells. Cellular Physiology & Biochemistry (Karger AG). 2017;43(4).
https://doi.org/10.1159/000481978
Bian W, Xiao S, Yang L, Chen J, Deng S. Quercetin promotes bone marrow mesenchymal stem cell proliferation and osteogenic differentiation through the H19/miR-625-5p axis to activate the Wnt/β-catenin pathway. BMC complementary medicine and therapies. 2021;21(1):243.
https://doi.org/10.1186/s12906-021-03418-8
Tang J, Diao P, Shu X, Li L, Xiong L. Quercetin and quercitrin attenuates the inflammatory response and oxidative stress in LPS‐induced RAW264.7 cells: In vitro assessment and a theoretical model. BioMed research international. 2019;2019(1):7039802.
https://doi.org/10.1155/2019/7039802
Tsai C-F, Chen G-W, Chen Y-C, Shen C-K, Lu D-Y, Yang L-Y, et al. Regulatory effects of quercetin on M1/M2 macrophage polarization and oxidative/antioxidative balance. Nutrients. 2021;14(1):67.
https://doi.org/10.3390/nu14010067
Miodini P, Fioravanti L, Di Fronzo G, Cappelletti V. The two phyto-oestrogens genistein and quercetin exert different effects on oestrogen receptor function. British journal of cancer. 1999;80(8):1150–5.
https://doi.org/10.1038/sj.bjc.6690479
Pang X-G, Cong Y, Bao N-R, Li Y-G, Zhao J-N. Quercetin stimulates bone marrow mesenchymal stem cell differentiation through an estrogen receptor‐mediated pathway. BioMed research international. 2018;2018(1):4178021.
https://doi.org/10.1155/2018/4178021
Wong SK, Chin K-Y, Ima-Nirwana S. Quercetin as an agent for protecting the bone: a review of the current evidence. International journal of molecular sciences. 2020;21(17):6448.
https://doi.org/10.3390/ijms21176448
Huang Y-Y, Wang Z-H, Deng L-H, Wang H, Zheng Q. Oral administration of quercetin or its derivatives inhibit bone loss in animal model of osteoporosis. Oxidative medicine and cellular longevity. 2020;2020(1):6080597.
https://doi.org/10.1155/2020/6080597
Yurteri A, Yildirim A, Çelik ZE, Vatansev H, Durmaz MS. The effect of quercetin on bone healing in an experimental rat model. Joint Diseases and Related Surgery. 2023;34(2):365.
https://doi.org/10.52312/jdrs.2023.870
Daman R, Miglani M. Genistein: A Multifaceted Flavonoid with Diverse Medicinal Applications. 2024.
Pugazhendhi D, Watson K, Mills S, Botting N, Pope G, Darbre P. Effect of sulphation on the oestrogen agonist activity of the phytoestrogens genistein and daidzein in MCF-7 human breast cancer cells. The Journal of endocrinology. 2008;197(3):503.
https://doi.org/10.1677/JOE-07-0384
Zhou Y, Su Z, Liu G, Hu S, Chang J. The Potential Mechanism of Soy Isoflavones in Treating Osteoporosis: Focusing on Bone Metabolism and Oxidative Stress. Phytotherapy Research. 2025;39(3):1645–58.
https://doi.org/10.1002/ptr.8451
Wu G-J, Chen J-T, Cherng Y-G, Chang C-C, Liu S-H, Chen R-M. Genistein improves bone healing via triggering estrogen receptor alpha-mediated expressions of osteogenesis-associated genes and consequent maturation of osteoblasts. Journal of Agricultural and Food Chemistry. 2020;68(39):10639–50.
https://doi.org/10.1021/acs.jafc.0c02830
Wu Z, Liu L. The protective activity of genistein against bone and cartilage diseases. Frontiers in Pharmacology. 2022;13:1016981.
https://doi.org/10.3389/fphar.2022.1016981
Mannino F, Imbesi C, Irrera N, Pallio G, Squadrito F, Bitto A. Insights into the antiosteoporotic mechanism of the soy‐derived isoflavone genistein: Modulation of the Wnt/beta‐catenin signaling. Biofactors. 2024;50(2):347–59.
https://doi.org/10.1002/biof.2008
Lee S-H, Kim J-K, Jang H-D. Genistein inhibits osteoclastic differentiation of RAW 264.7 cells via regulation of ROS production and scavenging. International Journal of Molecular Sciences. 2014;15(6):10605–21.
https://doi.org/10.3390/ijms150610605
Yamaguchi M, Levy RM. Combination of alendronate and genistein synergistically suppresses osteoclastic differentiation of RAW267.4 cells in vitro. Experimental and Therapeutic Medicine. 2017;14(2):1769–74.
https://doi.org/10.3892/etm.2017.4695
Chen C, Zheng H, Qi S. Genistein and silicon synergistically protects against ovariectomy-induced bone loss through upregulating OPG/RANKL ratio. Biological trace element research. 2019;188(2):441–50.
https://doi.org/10.1007/s12011-018-1433-8
Alshehri MM, Sharifi-Rad J, Herrera-Bravo J, Jara EL, Salazar LA, Kregiel D, et al. Therapeutic potential of isoflavones with an emphasis on daidzein. Oxidative Medicine and Cellular Longevity. 2021;2021(1):6331630.
https://doi.org/10.1155/2021/6331630
Hu B, Yu B, Tang D, Li S, Wu Y. Daidzein promotes osteoblast proliferation and differentiation in OCT1 cells through stimulating the activation of BMP-2/Smads pathway. Genet Mol Res. 2016;15(10.4238).
https://doi.org/10.4238/gmr.15028792
Sun J, Sun WJ, Li ZY, Li L, Wang Y, Zhao Y, et al. Daidzein increases OPG/RANKL ratio and suppresses IL-6 in MG-63 osteoblast cells. International Immunopharmacology. 2016;40:32–40.
https://doi.org/10.1016/j.intimp.2016.08.014
Chaboki HR, Akbarian F, Mehrjerdi HK. Isoflavones Potentials for the Treatment of Osteoporosis: An Update on In-vivo Studies. Journal of Lab Animal Research. 2022;1(1):20–5.
https://doi.org/10.58803/jlar.v1i1.10
Sirotkin AV, Alwasel SH, Harrath AH. The influence of plant isoflavones daidzein and equol on female reproductive processes. Pharmaceuticals. 2021;14(4):373.
https://doi.org/10.3390/ph14040373
Ohtomo T, Uehara M, Peñalvo JL, Adlercreutz H, Katsumata S-i, Suzuki K, et al. Comparative activities of daidzein metabolites, equol and O-desmethylangolensin, on bone mineral density and lipid metabolism in ovariectomized mice and in osteoclast cell cultures. European journal of nutrition. 2008;47(5):273–9.
https://doi.org/10.1007/s00394-008-0723-x
Tousen Y, Abe F, Ishida T, Uehara M, Ishimi Y. Resistant starch promotes equol production and inhibits tibial bone loss in ovariectomized mice treated with daidzein. Metabolism. 2011;60(10):1425–32.
https://doi.org/10.1016/j.metabol.2011.02.009
Ren Zq, Zheng Sy, Sun Z, Luo Y, Wang Yt, Yi P, et al. Resveratrol: Molecular Mechanisms, Health Benefits, and Potential Adverse Effects. MedComm. 2025;6(6):e70252.
https://doi.org/10.1002/mco2.70252
Ahmad Hairi H, Jayusman PA, Shuid AN. Revisiting resveratrol as an osteoprotective agent: molecular evidence from in vivo and in vitro studies. Biomedicines. 2023;11(5):1453.
https://doi.org/10.3390/biomedicines11051453
Qasem RJ. The estrogenic activity of resveratrol: A comprehensive review of in vitro and in vivo evidence and the potential for endocrine disruption. Critical Reviews in Toxicology. 2020;50(5):439–62.
https://doi.org/10.1080/10408444.2020.1762538
Abou‐Zeid LA, El‐Mowafy AM. Differential recognition of resveratrol isomers by the human estrogen receptor‐α: Molecular dynamics evidence for stereoselective ligand binding. Chirality: The Pharmacological, Biological, and Chemical Consequences of Molecular Asymmetry. 2004;16(3):190–5.
https://doi.org/10.1002/chir.20007
Shuid AN, Abdul Nasir NA, Ab Azis N, Shuid AN, Razali N, Ahmad Hairi H, et al. A Systematic Review on the Molecular Mechanisms of Resveratrol in Protecting Against Osteoporosis. International Journal of Molecular Sciences. 2025;26(7):2893.
https://doi.org/10.3390/ijms26072893
Elshimy Y, Alkhatib AR, Atassi B, Mohammad KS. Biomarker-Driven Approaches to Bone Metastases: From Molecular Mechanisms to Clinical Applications. Biomedicines. 2025;13(5):1160.
https://doi.org/10.3390/biomedicines13051160
Bailly AR, Hester GM, Alesi MG, Buresh RJ, Feito Y, Mermier CM, et al. Quercetins efficacy on bone and inflammatory markers, body composition, and physical function in postmenopausal women. Journal of Bone and Mineral Metabolism. 2025;43(3):304–14.
https://doi.org/10.1007/s00774-025-01592-0
Farr JN, Atkinson EJ, Achenbach SJ, Volkman TL, Tweed AJ, Vos SJ, et al. Effects of intermittent senolytic therapy on bone metabolism in postmenopausal women: a phase 2 randomized controlled trial. Nature Medicine. 2024;30(9):2605–12.
https://doi.org/10.1038/s41591-024-03096-2
Takuathung MN, Teekachunhatean S, Chansakaow S, Klinjan P, Inpan R, Kongta N, et al. The effects of SOY extract nutraceuticals on postmenopausal women's health: A randomized, double-blind, placebo-controlled trial. Journal of Functional Foods. 2024;113:106055.
https://doi.org/10.1016/j.jff.2024.106055
Lu L-JW, Chen N-W, Nayeem F, Nagamani M, Anderson KE. Soy isoflavones interact with calcium and contribute to blood pressure homeostasis in women: a randomized, double-blind, placebo controlled trial. European journal of nutrition. 2020;59(6):2369–81.
https://doi.org/10.1007/s00394-019-02085-3
Nayeem F, Chen N-W, Nagamani M, Anderson KE, Lu L-JW. Daidzein and genistein have differential effects in decreasing whole body bone mineral density but had no effect on hip and spine density in premenopausal women: A 2-year randomized, double-blind, placebo-controlled study. Nutrition Research. 2019;68:70–81.
https://doi.org/10.1016/j.nutres.2019.06.007
Arcoraci V, Atteritano M, Squadrito F, D'Anna R, Marini H, Santoro D, et al. Antiosteoporotic activity of genistein aglycone in postmenopausal women: evidence from a post-hoc analysis of a multicenter randomized controlled trial. Nutrients. 2017;9(2):179.
https://doi.org/10.3390/nu9020179
Lappe J, Kunz I, Bendik I, Prudence K, Weber P, Recker R, et al. Effect of a combination of genistein, polyunsaturated fatty acids and vitamins D3 and K1 on bone mineral density in postmenopausal women: a randomized, placebo-controlled, double-blind pilot study. European journal of nutrition. 2013;52(1):203–15.
https://doi.org/10.1007/s00394-012-0304-x
Alexandersen P, Toussaint A, Christiansen C, Devogelaer J-P, Roux C, Fechtenbaum J, et al. Ipriflavone in the treatment of postmenopausal osteoporosis: a randomized controlled trial. Jama. 2001;285(11):1482–8.
https://doi.org/10.1001/jama.285.11.1482
Chen L-R, Ko N-Y, Chen K-H. Isoflavone supplements for menopausal women: a systematic review. Nutrients. 2019;11(11):2649.
https://doi.org/10.3390/nu11112649
Tsikouras P, Chalkidou A, Iatrakis G, Kotanidou S, Zervoudis S, Nikolettos N. in Menopausal Symptomatic as Alternative Treatment Option. Women's Health Problems: A Global Perspective. 2024:93.
https://doi.org/10.5772/intechopen.114215
Chow HS, Garland LL, Heckman-Stoddard BM, Hsu C-H, Butler VD, Cordova CA, et al. A pilot clinical study of resveratrol in postmenopausal women with high body mass index: effects on systemic sex steroid hormones. Journal of translational medicine. 2014;12(1):223.
https://doi.org/10.1186/s12967-014-0223-0
Wong RH, Thaung Zaw JJ, Xian CJ, Howe PR. Regular supplementation with resveratrol improves bone mineral density in postmenopausal women: a randomized, placebo‐controlled trial. Journal of Bone and Mineral Research. 2020;35(11):2121–31.
https://doi.org/10.1002/jbmr.4115
Zaw JJT, Howe PR, Wong RH. Long-term effects of resveratrol on cognition, cerebrovascular function and cardio-metabolic markers in postmenopausal women: A 24-month randomised, double-blind, placebo-controlled, crossover study. Clinical Nutrition. 2021;40(3):820–9.
https://doi.org/10.1016/j.clnu.2020.08.025
Chen WX, Liu HH, Li RX, Mammadov G, Wang JJ, Liu FF, et al. C-type natriuretic peptide stimulates osteoblastic proliferation and collagen-X expression but suppresses fibroblast growth factor-23 expression in vitro. Pediatric Rheumatology. 2020;18(1):46.
https://doi.org/10.1186/s12969-020-00441-w
Peake N, Hobbs A, Pingguan-Murphy B, Salter D, Berenbaum F, Chowdhury T. Role of C-type natriuretic peptide signalling in maintaining cartilage and bone function. Osteoarthritis and cartilage. 2014;22(11):1800–7.
https://doi.org/10.1016/j.joca.2014.07.018
Prickett TC, Howe PR, Espiner EA. Resveratrol Induced Suppression of C type Natriuretic Peptide Associates With Increased Vertebral Bone Density in Postmenopausal Women. Journal of Bone and Mineral Research Plus. 2023;7(5):e10732.
https://doi.org/10.1002/jbm4.10732
Corbi G, Nobile V, Conti V, Cannavo A, Sorrenti V, Medoro A, et al. Equol and resveratrol improve bone turnover biomarkers in postmenopausal women: a clinical trial. International Journal of Molecular Sciences. 2023;24(15):12063.
https://doi.org/10.3390/ijms241512063
Qu Y, Luo Y, Yang X, Zhang Y, Yang E, Xu H, et al. Highly efficient biotransformation of phenolic glycosides using a recombinant β-glucosidase from white rot fungus Trametes trogii. Frontiers in Microbiology. 2022;13:762502.
https://doi.org/10.3389/fmicb.2022.762502
Németh K, Plumb GW, Berrin J-G, Juge N, Jacob R, Naim HY, et al. Deglycosylation by small intestinal epithelial cell β-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. European journal of nutrition. 2003;42(1):29–42.
https://doi.org/10.1007/s00394-003-0397-3
Luca SV, Macovei I, Bujor A, Miron A, Skalicka-Woźniak K, Aprotosoaie AC, et al. Bioactivity of dietary polyphenols: The role of metabolites. Critical reviews in food science and nutrition. 2020;60(4):626–59.
https://doi.org/10.1080/10408398.2018.1546669
Chen Z, Zheng S, Li L, Jiang H. Metabolism of flavonoids in human: a comprehensive review. Current Drug Metabolism. 2014;15(1):48–61.
https://doi.org/10.2174/138920021501140218125020
Shahidi F, Peng H. Bioaccessibility and bioavailability of phenolic compounds. Journal of Food Bioactives. 2018;4:11–68.
https://doi.org/10.31665/JFB.2018.4162
Zhang H, Hassan YI, Liu R, Mats L, Yang C, Liu C, et al. Molecular mechanisms underlying the absorption of aglycone and glycosidic flavonoids in a Caco-2 BBe1 cell model. ACS omega. 2020;5(19):10782–93.
https://doi.org/10.1021/acsomega.0c00379
Rudrapal M, Mishra AK, Rani L, Sarwa KK, Zothantluanga JH, Khan J, et al. Nanodelivery of dietary polyphenols for therapeutic applications. Molecules. 2022;27(24):8706.
https://doi.org/10.3390/molecules27248706
Mehandole A, Walke N, Mahajan S, Aalhate M, Maji I, Gupta U, et al. Core-shell type lipidic and polymeric nanocapsules: the transformative multifaceted delivery systems. AAPS PharmSciTech. 2023;24(1):50.
https://doi.org/10.1208/s12249-023-02504-z
Gali L, Pirozzi A, Donsì F. Biopolymer-and lipid-based carriers for the delivery of plant-based ingredients. Pharmaceutics. 2023;15(3):927.
https://doi.org/10.3390/pharmaceutics15030927
Kumari A, Yadav SK, Pakade YB, Singh B, Yadav SC. Development of biodegradable nanoparticles for delivery of quercetin. Colloids and Surfaces B: Biointerfaces. 2010;80(2):184–92.
https://doi.org/10.1016/j.colsurfb.2010.06.002
Kang MJ, Kim D-Y, Baek Y, Lee HG. Enhancement of antioxidant activities and stabilities of quercetin and isoquercetin through the combination of nanoencapsulation and hydrogel incorporation. Food Bioscience. 2023;55:102963.
https://doi.org/10.1016/j.fbio.2023.102963
Ahn J, Jeong J, Lee H, Sung M-J, Jung CH, Lee H, et al. Poly (lactic-co-glycolic acid) nanoparticles potentiate the protective effect of curcumin against bone loss in ovariectomized rats. Journal of Biomedical Nanotechnology. 2017;13(6):688–98.
https://doi.org/10.1166/jbn.2017.2372
Ahmad N, Banala VT, Kushwaha P, Karvande A, Sharma S, Tripathi AK, et al. Quercetin-loaded solid lipid nanoparticles improve osteoprotective activity in an ovariectomized rat model: a preventive strategy for post-menopausal osteoporosis. Rsc advances. 2016;6(100):97613–28.
https://doi.org/10.1039/C6RA17141A
Sharma G, Lee YH, Kim J-C, Sharma AR, Lee S-S. Bone Regeneration Enhanced by Quercetin-Capped Selenium Nanoparticles via miR206/Connexin43, WNT, and BMP signaling pathways. Aging and Disease. 2026;17(1):2.
Fang X, Hu J-F, Hu Q-Y, Li H, Sun Z-J, Xu Z, et al. ROS-responsive resveratrol-loaded cyclodextrin nanomicelles reduce inflammatory osteolysis. Colloids and Surfaces B: Biointerfaces. 2022;219:112819.
https://doi.org/10.1016/j.colsurfb.2022.112819
Peng H, Qiu X, Cheng M, Zhao Y, Song L, Zhu B, et al. Resveratrol-loaded nanoplatform RSV@ DTPF promote alveolar bone regeneration in OVX rat through remodeling bone-immune microenvironment. Chemical Engineering Journal. 2023;476:146615.
https://doi.org/10.1016/j.cej.2023.146615
Wankhede S, Badule A, Chaure S, Damahe A, Damahe M, Porwal O. Challenges and Strategies in Prodrug Design: A Comprehensive Review. Journal of Advanced Scientific Research. 2025;16(06):1–20.
https://doi.org/10.55218/JASR.2025160601
Qin S, Yang Z, Lei J, Xie Q, Jiang L, Fan Y, et al. Comparative efficacy of preventive vs. therapeutic resveratrol in modulating gut microbiota and alleviating inflammation in DSS-induced colitis. BMC immunology. 2025;26(1):42.
https://doi.org/10.1186/s12865-025-00718-3
Mattarei A, Azzolini M, La Spina M, Zoratti M, Paradisi C, Biasutto L. Amino acid carbamates as prodrugs of resveratrol. Scientific reports. 2015;5(1):15216.
https://doi.org/10.1038/srep15216
Belmonte-Reche E, Peñalver P, Caro-Moreno M, Mateos-Martín ML, Adán N, Delgado M, et al. Silyl resveratrol derivatives as potential therapeutic agents for neurodegenerative and neurological diseases. European Journal of Medicinal Chemistry. 2021;223:113655.
https://doi.org/10.1016/j.ejmech.2021.113655
Inglut CT, Sorrin AJ, Kuruppu T, Vig S, Cicalo J, Ahmad H, et al. Immunological and toxicological considerations for the design of liposomes. Nanomaterials. 2020;10(2):190.
https://doi.org/10.3390/nano10020190
Santhanakrishnan KR, Koilpillai J, Narayanasamy D, Santhanakrishnan K. PEGylation in pharmaceutical development: current status and emerging trends in macromolecular and immunotherapeutic drugs. Cureus. 2024;16(8).
https://doi.org/10.7759/cureus.66669
Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon. 2022;8(5).
https://doi.org/10.1016/j.heliyon.2022.e09394
Li R, Wei Y, Xiong C, Wang J, Lin Y, Deng R, et al. Targeted delivery of liposomal senolytics to alleviate cellular senescence-induced bone loss. Fundamental Research. 2025;5(4):1429–39.
https://doi.org/10.1016/j.fmre.2024.12.010
Owczarek-Januszkiewicz A, Magiera A, Olszewska MA. Enzymatically modified isoquercitrin: Production, metabolism, bioavailability, toxicity, pharmacology, and related molecular mechanisms. International Journal of Molecular Sciences. 2022;23(23):14784.
https://doi.org/10.3390/ijms232314784
Sheng L, Gao F, Lan Z, Zong B, Wang Q. Isoquercitrin loaded PEGylated long circulating liposomes improve bone mass and reduce oxidative stress after osteoporosis. AAPS PharmSciTech. 2024;26(1):5.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Haryati Ahmad Hairi, Rusdiah Ruzanna Jusoh, Muhammad Zulfiqah Sadikan, Ahmad Nazrun Shuid

This work is licensed under a Creative Commons Attribution 4.0 International License.




