Plasma Sestrin2 levels and risk of acute ischemic stroke: A case–control study
DOI:
https://doi.org/10.17305/bb.2025.12367Keywords:
Sestrin2, acute ischemic stroke, ischemia, nitric oxide, total antioxidant capacityAbstract
Sestrin2, a stress-inducible protein with antioxidant properties, is upregulated in response to various stressors, including oxidative and energetic stress. This study examines the relationship between plasma Sestrin2 levels, total antioxidant capacity (TAC), total nitric oxide (NO), and the likelihood of experiencing an acute ischemic stroke (AIS) within the Qatari population. The cohort consisted of 187 AIS patients and 30 healthy controls. Plasma concentrations of Sestrin2, TAC, and nitrite/nitrate (an indirect measure of NO) were evaluated at four intervals: within 48 hours of stroke onset, and at 5 days, 30 days, and 1 year post-stroke. At stroke onset, AIS patients exhibited significantly lower plasma levels of Sestrin2 (1.434±3.57 vs. 8.383±7.39; p <0.001), TAC (1.88±0.42 vs. 2.279±0.326; p <0.001), and nitrite/nitrate (53.5±47.9 vs. 65.951±44.07; p = 0.04) compared to controls. Sestrin2 levels remained diminished at 5 and 30 days post-stroke, while NO levels increased by day 5 (p = 0.01). Multiple logistic regression analysis revealed that male sex, diabetes, high National Institutes of Health Stroke Scale (NIHSS) scores, and small vessel disease (SVD) were associated with increased odds of AIS, whereas Middle Eastern ethnicity correlated with reduced odds. Notably, higher tertiles of Sestrin2, TAC, and NO were linked to decreased odds of AIS, with adjusted odds ratios of 0.123 (p < 0.001), 0.327 (p = 0.01), and 0.063 (p = 0.01), respectively. The observed lower plasma levels of Sestrin2, TAC, and NO at stroke onset and up to 30 days post-event suggest their potential role as biomarkers in stroke occurrence and recovery, with elevated levels associated with a decreased likelihood of AIS.
Citations
Downloads
References
Katan M, Luft A. Global burden of stroke. Semin Neurol 2018;38(2):208–211. https://doi.org/10.1055/s-0038-1649503
Mendis S, Davis S, Norrving B. Organizational update: The World Health Organization global status report on noncommunicable diseases 2014; one more landmark step in the combat against stroke and vascular disease. Stroke 2015;46(5):e121–e122. https://doi.org/10.1161/STROKEAHA.115.008097
Agouni A, Parray AS, Akhtar N, Mir FA, Bourke PJ, Joseph S, Morgan DM, Santos MD, Wadiwala MF, Kamran S, Sivaraman SK, Shuaib A. There is selective increase in pro-thrombotic circulating extracellular vesicles in acute ischemic stroke and transient ischemic attack: a study of patients from the Middle East and Southeast Asia. Front Neurol 2019;10:251. https://doi.org/10.3389/fneur.2019.00251
Jallow E, Al Hail H, Han TS, Sharma S, Deleu D, Ali M, Al Hussein H, Abuzaid HO, Sharif K, Khan FY, Sharma P. Current status of stroke in Qatar: including data from the BRAINS study. JRSM Cardiovasc Dis 2019;8:2048004019869160. https://doi.org/10.1177/2048004019869160
United Nations Department of Economic and Social Affairs. World economic situation and prospects 2018. 2018. https://doi.org/10.18356/02486bd4-en
Hamad A, Hamad A, Sokrab TEO, Momeni S, Mesraoua B, Lingren A. Stroke in Qatar: a one-year, hospital-based study. J Stroke Cerebrovasc Dis 2001;10(5):236–241. https://doi.org/10.1053/jscd.2001.30382
Parray A, Akhtar N, Sivaraman S, Raïq H, Own A, Shuaib A, Agouni A. The relationship of circulating extracellular vesicles to small vessel disease in acute ischemic stroke. Physiology 2023;38(S1):5733224. https://doi.org/10.1152/physiol.2023.38.S1.5733224
Ibrahim F, Deleu D, Akhtar N, Al-Yazeedi W, Mesraoua B, Kamran S, Shuaib A. Burden of stroke in Qatar. J Stroke Cerebrovasc Dis 2015;24(12):2875–2879. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.08.024
Macrotrends. Qatar life expectancy 1950–2023. https://www.macrotrends.net/countries/QAT/qatar/life-expectancy (accessed December 12, 2023).
Feske SK. Ischemic stroke. Am J Med 2021;134(12):1457–1464. https://doi.org/10.1016/j.amjmed.2021.07.027
Jakubczyk K, Dec K, Kałduńska J, Kawczuga D, Kochman J, Janda K. Reactive oxygen species – sources, functions, oxidative damage. Pol Merkur Lek 2020;48(284):124–127.
Guldiken B, Demir M, Guldiken S, Turgut N, Turgut B, Tugrul A. Oxidative stress and total antioxidant capacity in diabetic and nondiabetic acute ischemic stroke patients. Clin Appl Thromb Hemost 2009;15(6):695–700. https://doi.org/10.1177/1076029608323087
Panth N, Paudel KR, Parajuli K. Reactive oxygen species: a key hallmark of cardiovascular disease. Adv Med 2016;2016:9152732. https://doi.org/10.1155/2016/9152732
Maamoun H, Benameur T, Pintus G, Munusamy S, Agouni A. Crosstalk between oxidative stress and endoplasmic reticulum (ER) stress in endothelial dysfunction and aberrant angiogenesis associated with diabetes: a focus on the protective roles of heme oxygenase (HO)-1. Front Physiol 2019;10:70. https://doi.org/10.3389/fphys.2019.00070
Fatima MT, Hasan M, Abdelsalam SS, Sivaraman SK, El-Gamal H, Zahid MA, Elrayess MA, Korashy HM, Zeidan A, Parray AS, Agouni A. Sestrin2 suppression aggravates oxidative stress and apoptosis in endothelial cells subjected to pharmacologically induced endoplasmic reticulum stress. Eur J Pharmacol 2021;907:174247. https://doi.org/10.1016/j.ejphar.2021.174247
Abdelsalam SS, Korashy HM, Zeidan A, Agouni A. The role of protein tyrosine phosphatase (PTP)-1B in cardiovascular disease and its interplay with insulin resistance. Biomolecules 2019;9(7):286. https://doi.org/10.3390/biom9070286
Gao A, Li F, Zhou Q, Chen L. Sestrin2 as a potential therapeutic target for cardiovascular diseases. Pharmacol Res 2020;159:104990. https://doi.org/10.1016/j.phrs.2020.104990
Zahid MA, Abdelsalam SS, Raïq H, Parray A, Korashy HM, Zeidan A, Elrayess MA, Agouni A. Sestrin2 as a protective shield against cardiovascular disease. Int J Mol Sci 2023;24(5):4880. https://doi.org/10.3390/ijms24054880
Hu H, Luo Z, Liu X, Huang L, Lu X, Ding R, Duan C, He Y. Sestrin2 overexpression ameliorates endoplasmic reticulum stress-induced apoptosis via inhibiting mTOR pathway in HepG2 cells. Int J Endocrinol 2022;2022:2009753. https://doi.org/10.1155/2022/2009753
Shi X, Xu L, Doycheva DM, Tang J, Yan M, Zhang JH. Sestrin2, as a negative feedback regulator of mTOR, provides neuroprotection by activation of AMPK phosphorylation in neonatal hypoxic-ischemic encephalopathy in rat pups. J Cereb Blood Flow Metab 2017;37(4):1447–1460. https://doi.org/10.1177/0271678X16656201
Li Y, Wu J, Yu S, Zhu J, Zhou Y, Wang P, Li L, Zhao Y. Sestrin2 promotes angiogenesis to alleviate brain injury by activating Nrf2 through regulating the interaction between p62 and Keap1 following photothrombotic stroke in rats. Brain Res 2020;1745:146948. https://doi.org/10.1016/j.brainres.2020.146948
Abdelsalam SS, Zahid MA, Raïq H, Abunada H, Elsayed A, Parray A, Agouni A. The association between plasma levels of Sestrin2 and risk factors of cardiovascular diseases in healthy and diabetic adults: a study of Qatar Biobank data. Biomol Biomed 2025;25(7):1479–1490. https://doi.org/10.17305/bb.2024.11418
Agouni A, Zahid MA, Abdelsalam SS, Raïq H, Abunada HH, Parray A. Association of plasma levels of Sestrin2 with adiposity and metabolic function indices in healthy and diabetic subjects from Qatar Biobank. Front Endocrinol 2025;16:1518388. https://doi.org/10.3389/fendo.2025.1518388
Maamoun H, Abdelsalam SS, Zeidan A, Korashy HM, Agouni A. Endoplasmic reticulum stress: a critical molecular driver of endothelial dysfunction and cardiovascular disturbances associated with diabetes. Int J Mol Sci 2019;20(7):1658. https://doi.org/10.3390/ijms20071658
Tian X, Gao Y, Zhong M, Kong M, Zhao L, Feng Z, Sun Q, He J, Liu X. The association between serum Sestrin2 and the risk of coronary heart disease in patients with type 2 diabetes mellitus. BMC Cardiovasc Disord 2022;22(1):281. https://doi.org/10.1186/s12872-022-02727-1
Kishimoto Y, Aoyama M, Saita E, Ikegami Y, Ohmori R, Kondo K, Momiyama Y. Association between Plasma Sestrin2 Levels and the Presence and Severity of Coronary Artery Disease. Dis Markers 2020;2020:e7439574. https://doi.org/10.1155/2020/7439574
Wang H, Li N, Shao X, Li J, Guo L, Yu X, Sun Y, Hao J, Niu H, Xiang J, Li X, Han X. Increased plasma sestrin2 concentrations in patients with chronic heart failure and predicted the occurrence of major adverse cardiac events: a 36-month follow-up cohort study. Clin Chim Acta 2019;495:338–344. https://doi.org/10.1016/j.cca.2019.04.084
Kishimoto Y, Saita E, Ohmori R, Kondo K, Momiyama Y. Plasma sestrin2 concentrations and carotid atherosclerosis. Clin Chim Acta 2020;504:56–59. https://doi.org/10.1016/j.cca.2020.01.020
Gariballa SE, Hutchin TP, Sinclair AJ. Antioxidant capacity after acute ischaemic stroke. QJM 2002;95(10):685–690. https://doi.org/10.1093/qjmed/95.10.685
Pir GJ, Zahid MA, Akhtar N, Ayadathil R, Pananchikkal SV, Joseph S, Morgan DM, Babu B, Ty Ui R, Sivasankaran S, Francis R, Own A, Shuaib A, Parray A, Agouni A. Differentially expressed miRNA profiles of serum derived extracellular vesicles from patients with acute ischemic stroke. Brain Res 2024;1845:149171. https://doi.org/10.1016/j.brainres.2024.149171
Gupta S, Finelli R, Agarwal A, Henkel R. Total antioxidant capacity – relevance, methods and clinical implications. Andrologia 2021;53(2):e13624. https://doi.org/10.1111/and.13624
Rautiainen S, Larsson S, Virtamo J, Wolk A. Total antioxidant capacity of diet and risk of stroke: a population-based prospective cohort of women. Stroke 2012;43(2):335–340. https://doi.org/10.1161/STROKEAHA.111.635557
Ghonimi NAM, Mahdy ME, Abdel Salam OA. Total antioxidant capacity predicts outcome in acute ischemic stroke subtypes in Egyptian patients. J Stroke Cerebrovasc Dis 2019;28(7):1911–1917. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.03.053
Milajerdi A, Shakeri F, Keshteli AH, Mousavi SM, Benisi-Kohansal S, Saadatnia M, Esmaillzadeh A. Dietary total antioxidant capacity in relation to stroke among Iranian adults. Nutr Neurosci 2020;23(6):465–470. https://doi.org/10.1080/1028415X.2018.1520478
Rudic RD, Sessa WC. Nitric oxide in endothelial dysfunction and vascular remodeling: clinical correlates and experimental links. Am J Hum Genet 1999;64(3):673–677. https://doi.org/10.1086/302304
Taffi R, Nanetti L, Mazzanti L, Bartolini M, Vignini A, Raffaelli F, Pasqualetti P, Vernieri F, Provinciali L, Silvestrini M. Plasma levels of nitric oxide and stroke outcome. J Neurol 2008;255(1):94–98. https://doi.org/10.1007/s00415-007-0700-y
Wang Y, Hong F, Yang S. Roles of nitric oxide in brain ischemia and reperfusion. Int J Mol Sci 2022;23(8):4243. https://doi.org/10.3390/ijms23084243
Kishimoto Y, Aoyama M, Saita E, Ikegami Y, Ohmori R, Kondo K, Momiyama Y. Association between plasma Sestrin2 levels and the presence and severity of coronary artery disease. Dis Markers 2020;2020:7439574. https://doi.org/10.1155/2020/7439574
Bushnell C, McCullough LD, Awad IA, Chireau MV, Fedder WN, Furie KL, Howard VJ, Lichtman JH, Lisabeth LD, Piña IL, Reeves MJ, Rexrode KM, Saposnik G, Singh V, Towfighi A, Vaccarino V, Walters MR. Guidelines for the prevention of stroke in women: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2014;45(5):1545–1588. https://doi.org/10.1161/01.STR.0000442009.06663.48
Chen R, Ovbiagele B, Feng W. Diabetes and stroke: epidemiology, pathophysiology, pharmaceuticals and outcomes. Am J Med Sci 2016;351(4):380–386. https://doi.org/10.1016/j.amjms.2016.01.011
National Institute of Neurological Disorders and Stroke. NIH Stroke Scale. https://www.ninds.nih.gov/health-information/public-education/know-stroke/health-professionals/nih-stroke-scale
Downloads
Additional Files
Published
Issue
Section
Categories
License
Copyright (c) 2025 Loulia Bader, Aijaz Parray, Naveed Akhtar, Hicham Raïq, Sajitha V. Pananchikkal, Raheem Ayadathil, Deborah M. Morgan, Blessy Babu, Reny Francis, Ahmed Own, Ghulam Jeelani Pir, Ashfaq Shuaib, Abdelali Agouni

This work is licensed under a Creative Commons Attribution 4.0 International License.




