Genetic determinants of lipid metabolism in cardioprotection: From mechanisms to clinical practice

Authors

  • Mia Manojlovic University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia; Clinic for Endocrinology, Diabetes and Metabolic Disorders, University Clinical Center of Vojvodina, Novi Sad, Serbia
  • Diana Mahmoud Department of Endocrinology, Medical Faculty, Medical University Sofia, USHATE "Acad. Ivan Penchev", Sofia, Bulgaria
  • Magdalena Pantic University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia
  • Melaku Taye Amogne College of Health Sciences, Addis Ababa University, Department of Internal Medicine, Addis Ababa, Ethiopia

DOI:

https://doi.org/10.17305/bb.2025.13176

Keywords:

Cardioprotective genetic determinants, lipids, atherosclerosis, hypocholesterolemia, mutation

Abstract

Atherosclerotic cardiovascular diseases continue to be the leading causes of morbidity and mortality globally. Disorders of lipoprotein metabolism contribute significantly to the development of atherosclerosis, which begins with the subendothelial retention of plasma-derived apolipoprotein B-containing lipoproteins, particularly low-density lipoprotein (LDL) and its remnants. Elevated LDL cholesterol levels and triglycerides, coupled with low high-density lipoprotein (HDL) cholesterol levels, are critical risk factors for atherosclerotic cardiovascular diseases. Landmark epidemiological studies have identified dyslipidemia as a key modifiable risk factor for these diseases, elucidating the essential role of lipid abnormalities in atherogenesis and highlighting significant opportunities for cardiovascular disease prevention and risk stratification. Genetic epidemiology studies have shown that lifelong low levels of LDL due to genetic variations markedly reduce the risk of atherosclerotic cardiovascular diseases. Recent advancements in lipid-lowering pharmacology are increasingly informed by genetic studies that reveal naturally occurring mutations offering lifelong cardioprotection. Furthermore, these genetic studies have facilitated the development of novel therapeutics and enhanced the prediction of potential side effects, variability in individual drug responses, and improved risk stratification. This narrative review article aims to summarize key genetic variants that influence lipid metabolism and examine their therapeutic potential in cardiovascular therapy. Given the central role of atherosclerosis in determining cardiovascular risk, it is vital to consider lipid metabolism in the context of genetic factors that affect individual susceptibility to hyperlipidemia. Defining cardioprotective genetic determinants is equally important, as it may provide a foundation for therapeutic strategies by emphasizing protective mechanisms.

Citations

Downloads

Download data is not yet available.

References

Global Burden of Cardiovascular D, Risks C. Global, regional, and national burden of cardiovascular diseases and risk factors in 204 countries and territories, 1990–2023. J Am Coll Cardiol 2025;0(0).

Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, et al. 2024 heart disease and stroke statistics: a report of US and global data from the American Heart Association. Circulation 2024;149(8):e347–e913. https://doi.org/10.1161/CIR.0000000000001247.

Skålén K, Gustafsson M, Rydberg EK, Hultén LM, Wiklund O, Innerarity TL, Borén J. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 2002;417(6890):750–4. https://doi.org/10.1038/nature00804.

Williams KJ, Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 1995;15(5):551–61. https://doi.org/10.1161/01.ATV.15.5.551.

Williams KJ, Tabas I. Lipoprotein retention—and clues for atheroma regression. Arterioscler Thromb Vasc Biol 2005;25(8):1536–40. https://doi.org/10.1161/01.ATV.0000174795.62387.d3.

Anderson KM, Castelli WP, Levy D. Cholesterol and mortality: 30 years of follow-up from the Framingham study. JAMA 1987;257(16):2176–80. https://doi.org/10.1001/jama.1987.03390160062027.

Verschuren WM, Jacobs DR, Bloemberg BP, Kromhout D, Menotti A, Aravanis C, et al. Serum total cholesterol and long-term coronary heart disease mortality in different cultures: twenty-five-year follow-up of the Seven Countries Study. JAMA 1995;274(2):131–6. https://doi.org/10.1001/jama.1995.03530020049031.

Martin MJ, Hulley SB, Browner WS, Kuller LH, Wentworth D. Serum cholesterol, blood pressure, and mortality: implications from a cohort of 361,662 men. Lancet 1986;2(8513):933–6. https://doi.org/10.1016/S0140-6736(86)90597-0.

Sharrett AR, Ballantyne CM, Coady SA, Heiss G, Sorlie PD, Catellier D, et al. Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: the Atherosclerosis Risk in Communities (ARIC) study. Circulation 2001;104(10):1108–13. https://doi.org/10.1161/hc3501.095214.

Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case–control study. Lancet 2004;364(9438):937–52. https://doi.org/10.1016/S0140-6736(04)17018-9.

Holmes MV, Asselbergs FW, Palmer TM, Drenos F, Lanktree MB, Nelson CP, et al. Mendelian randomization of blood lipids for coronary heart disease. Eur Heart J 2015;36(9):539–50. https://doi.org/10.1093/eurheartj/eht571.

Ference BA, Yoo W, Alesh I, Mahajan N, Mirowska KK, Mewada A, et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. J Am Coll Cardiol 2012;60(25):2631–9. https://doi.org/10.1016/j.jacc.2012.09.017.

Emerging Risk Factors C, Di Angelantonio E, Gao P, Pennells L, Kaptoge S, Caslake M, et al. Lipid-related markers and cardiovascular disease prediction. JAMA 2012;307(23):2499–506.

Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 2006;354(12):1264–72. https://doi.org/10.1056/NEJMoa054013.

Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 2005;366(9493):1267–78. https://doi.org/10.1016/S0140-6736(05)67394-1.

Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, Bhala N, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010;376(9753):1670–81. https://doi.org/10.1016/S0140-6736(10)61350-5.

Cholesterol Treatment Trialists C. Efficacy and safety of statin therapy in older people: a meta-analysis of individual participant data from 28 randomised controlled trials. Lancet 2019;393(10170):407–15. https://doi.org/10.1016/S0140-6736(18)31942-1.

Mihaylova B, Emberson J, Blackwell L, Keech A, Simes J, Barnes EH, et al. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 2012;380(9841):581–90. https://doi.org/10.1016/S0140-6736(12)60367-5.

LaRosa JC, Grundy SM, Waters DD, Shear C, Barter P, Fruchart JC, et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med 2005;352(14):1425–35. https://doi.org/10.1056/NEJMoa050461.

Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med 2015;372(25):2387–97. https://doi.org/10.1056/NEJMoa1410489.

Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 2017;376(18):1713–22. https://doi.org/10.1056/NEJMoa1615664.

Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med 2018;379(22):2097–107. https://doi.org/10.1056/NEJMoa1801174.

Ray KK, Wright RS, Kallend D, Koenig W, Leiter LA, Raal FJ, et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med 2020;382(16):1507–19. https://doi.org/10.1056/NEJMoa1912387.

Nissen SE, Lincoff AM, Brennan D, Ray KK, Mason D, Kastelein JJP, et al. Bempedoic acid and cardiovascular outcomes in statin-intolerant patients. N Engl J Med 2023;388(15):1353–64. https://doi.org/10.1056/NEJMoa2215024.

Stoekenbroek RM, Kastelein JJP. Proprotein convertase subtilisin/kexin type 9: from genetics to clinical trials. Curr Opin Cardiol 2018;33(3):269–75. https://doi.org/10.1097/HCO.0000000000000517.

Burnett JR, Hegele RA. Finding the therapeutic sweet spot: using naturally occurring human variants to inform drug design. Circ Cardiovasc Genet 2015;8(5):637–9. https://doi.org/10.1161/CIRCGENETICS.115.001219.

Legault MA, Tardif JC, Dube MP. Pharmacogenomics of blood lipid regulation. Pharmacogenomics 2018;19(7):651–65. https://doi.org/10.2217/pgs-2018-0007.

Stender S, Tybjærg-Hansen A. Using human genetics to predict the effects and side-effects of drugs. Curr Opin Lipidol 2016;27(2):105–11. https://doi.org/10.1097/MOL.0000000000000280.

Shatnawi A, Kamran Z, Al-Share Q. Pharmacogenomics of lipid-lowering agents: the impact on efficacy and safety. Pers Med 2023;20(1):65–86. https://doi.org/10.2217/pme-2022-0041.

Hindi NN, Alenbawi J, Nemer G. Pharmacogenomics variability of lipid-lowering therapies in familial hypercholesterolemia. J Pers Med 2021;11(9). https://doi.org/10.3390/jpm11090877.

Leren TP, Berge KE. Identification of mutations in the apolipoprotein B-100 gene and in the PCSK9 gene as the cause of hypocholesterolemia. Clin Chim Acta 2008;397(1–2):92–5. https://doi.org/10.1016/j.cca.2008.07.025.

Jakubowski B, Shao Y, McNeal C, Xing C, Ahmad Z. Monogenic and polygenic causes of low and extremely low LDL-C levels in patients referred to specialty lipid clinics: genetics of low LDL-C. J Clin Lipidol 2021;15(5):658–64. https://doi.org/10.1016/j.jacl.2021.07.003.

Welty FK. Hypobetalipoproteinemia and abetalipoproteinemia. Curr Opin Lipidol 2014;25(3):161–8. https://doi.org/10.1097/MOL.0000000000000072.

Moutzouri E, Elisaf M, Liberopoulos EN. Hypocholesterolemia. Curr Vasc Pharmacol 2011;9(2):200–12. https://doi.org/10.2174/157016111794519354.

Schonfeld G, Lin X, Yue P. Familial hypobetalipoproteinemia: genetics and metabolism. Cell Mol Life Sci 2005;62(12):1372–8. https://doi.org/10.1007/s00018-005-4473-0.

Chen Z, Saffitz JE, Latour MA, Schonfeld G. Truncated apo B-70.5-containing lipoproteins bind to megalin but not the LDL receptor. J Clin Invest 1999;103(10):1419–30. https://doi.org/10.1172/JCI4921.

Elias N, Patterson BW, Schonfeld G. Decreased production rates of VLDL triglycerides and ApoB-100 in subjects heterozygous for familial hypobetalipoproteinemia. Arterioscler Thromb Vasc Biol 1999;19(11):2714–21. https://doi.org/10.1161/01.ATV.19.11.2714.

Burnett JR, Shan J, Miskie BA, Whitfield AJ, Yuan J, Tran K, et al. A novel nontruncating APOB gene mutation, R463W, causes familial hypobetalipoproteinemia. J Biol Chem 2003;278(15):13442–52. https://doi.org/10.1074/jbc.M300235200.

Burnett JR, Zhong S, Jiang ZG, Hooper AJ, Fisher EA, McLeod RS, et al. Missense mutations in APOB within the beta alpha1 domain of human APOB-100 result in impaired secretion of ApoB and ApoB-containing lipoproteins in familial hypobetalipoproteinemia. J Biol Chem 2007;282(33):24270–83. https://doi.org/10.1074/jbc.M702442200.

Meng FH, Liu S, Xiao J, Zhou YX, Dong LW, Li YF, et al. New loss-of-function mutations in PCSK9 reduce plasma LDL cholesterol. Arterioscler Thromb Vasc Biol 2023;43(7):1219–33. https://doi.org/10.1161/ATVBAHA.122.318839.

Macvanin MT, Gluvic ZM, Klisic AN, Manojlovic MS, Suri JS, Rizzo M, Isenovic ER. The link between miRNAs and PCSK9 in atherosclerosis. Curr Med Chem 2024;31(42):6926–56. https://doi.org/10.2174/0109298673262124231102042914.

Berge KE, Ose L, Leren TP. Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler Thromb Vasc Biol 2006;26(5):1094–100. https://doi.org/10.1161/01.ATV.0000204337.81286.1c.

Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet 2005;37(2):161–5. https://doi.org/10.1038/ng1509.

Homer VM, Marais AD, Charlton F, Laurie AD, Hurndell N, Scott R, et al. Identification and characterization of two non-secreted PCSK9 mutants associated with familial hypercholesterolemia in cohorts from New Zealand and South Africa. Atherosclerosis 2008;196(2):659–66. https://doi.org/10.1016/j.atherosclerosis.2007.07.022.

Kotowski IK, Pertsemlidis A, Luke A, Cooper RS, Vega GL, Cohen JC, Hobbs HH. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am J Hum Genet 2006;78(3):410–22. https://doi.org/10.1086/500615.

Natarajan P, Peloso GM, Zekavat SM, Montasser M, Ganna A, Chaffin M, et al. Deep-coverage whole genome sequences and blood lipids among 16,324 individuals. Nat Commun 2018;9(1):3391. https://doi.org/10.1038/s41467-018-05747-8.

Bjornsson E, Gunnarsdottir K, Halldorsson GH, Sigurdsson A, Arnadottir GA, Jonsson H, et al. Lifelong reduction in LDL (low-density lipoprotein) cholesterol due to a gain-of-function mutation in LDLR. Circ Genom Precis Med 2021;14(1):e003029. https://doi.org/10.1161/CIRCGEN.120.003029.

Scicchitano P, Amati F, Ciccone MM, D'Ascenzi F, Imbalzano E, Liga R, et al. Hypertriglyceridemia: molecular and genetic landscapes. Int J Mol Sci 2024;25(12):6364. https://doi.org/10.3390/ijms25126364.

Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta 2014;1841(7):919–33. https://doi.org/10.1016/j.bbalip.2014.03.013.

Wu SA, Kersten S, Qi L. Lipoprotein lipase and its regulators: an unfolding story. Trends Endocrinol Metab 2021;32(1):48–61. https://doi.org/10.1016/j.tem.2020.11.005.

Wadstrom BN, Pedersen KM, Wulff AB, Nordestgaard BG. Elevated remnant cholesterol, plasma triglycerides, and cardiovascular and non-cardiovascular mortality. Eur Heart J 2023;44(16):1432–45. https://doi.org/10.1093/eurheartj/ehac822.

Mach F, Koskinas KC, Roeters van Lennep JE, Tokgozoglu L, Badimon L, Baigent C, et al. 2025 focused update of the 2019 ESC/EAS guidelines for the management of dyslipidaemias. Atherosclerosis 2025;409:120479. https://doi.org/10.1016/j.atherosclerosis.2025.120479.

Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020;41(1):111–88. https://doi.org/10.1093/eurheartj/ehz455.

Ference BA, Kastelein JJP, Ray KK, Ginsberg HN, Chapman MJ, Packard CJ, et al. Association of triglyceride-lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. JAMA 2019;321(4):364–73. https://doi.org/10.1001/jama.2018.20045.

Varbo A, Benn M, Tybjaerg-Hansen A, Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol 2013;61(4):427–36. https://doi.org/10.1016/j.jacc.2012.08.1026.

TG, HDL Working Group of the Exome Sequencing Project NHL, Blood I, Crosby J, Peloso GM, Auer PL, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med 2014;371(1):22–31. https://doi.org/10.1056/NEJMoa1307095.

Dewey FE, Gusarova V, O'Dushlaine C, Gottesman O, Trejos J, Hunt C, et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N Engl J Med 2016;374(12):1123–33. https://doi.org/10.1056/NEJMoa1510926.

Stitziel NO, Khera AV, Wang X, Bierhals AJ, Vourakis AC, Sperry AE, et al. ANGPTL3 deficiency and protection against coronary artery disease. J Am Coll Cardiol 2017;69(16):2054–63. https://doi.org/10.1016/j.jacc.2017.02.030.

Nordestgaard BG. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology. Circ Res 2016;118(4):547–63. https://doi.org/10.1161/CIRCRESAHA.115.306249.

Rip J, Nierman MC, Ross CJ, Jukema JW, Hayden MR, Kastelein JJ, et al. Lipoprotein lipase S447X: a naturally occurring gain-of-function mutation. Arterioscler Thromb Vasc Biol 2006;26(6):1236–45. https://doi.org/10.1161/01.ATV.0000219283.10832.43.

Sagoo GS, Tatt I, Salanti G, Butterworth AS, Sarwar N, van Maarle M, et al. Seven lipoprotein lipase gene polymorphisms, lipid fractions, and coronary disease: a HuGE association review and meta-analysis. Am J Epidemiol 2008;168(11):1233–46. https://doi.org/10.1093/aje/kwn235.

Myocardial Infarction G, Investigators CAEC, Stitziel NO, Stirrups KE, Masca NG, Erdmann J, et al. Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. N Engl J Med 2016;374(12):1134–44. https://doi.org/10.1056/NEJMoa1507652.

Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjaerg-Hansen A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med 2014;371(1):32–41. https://doi.org/10.1056/NEJMoa1308027.

Talmud PJ, Smart M, Presswood E, Cooper JA, Nicaud V, Drenos F, et al. ANGPTL4 E40K and T266M: effects on plasma triglyceride and HDL levels, postprandial responses, and CHD risk. Arterioscler Thromb Vasc Biol 2008;28(12):2319–25. https://doi.org/10.1161/ATVBAHA.108.176917.

Abid K, Trimeche T, Mili D, Msolli MA, Trabelsi I, Nouira S, Kenani A. ANGPTL4 variants E40K and T266M are associated with lower fasting triglyceride levels and predict cardiovascular disease risk in type 2 diabetic Tunisian population. Lipids Health Dis 2016;15:63. https://doi.org/10.1186/s12944-016-0231-6.

Dewey FE, Gusarova V, Dunbar RL, O'Dushlaine C, Schurmann C, Gottesman O, et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N Engl J Med 2017;377(3):211–21. https://doi.org/10.1056/NEJMoa1612790.

Minicocci I, Santini S, Cantisani V, Stitziel N, Kathiresan S, Arroyo JA, et al. Clinical characteristics and plasma lipids in subjects with familial combined hypolipidemia: a pooled analysis. J Lipid Res 2013;54(12):3481–90. https://doi.org/10.1194/jlr.P039875.

Peloso GM, Auer PL, Bis JC, Voorman A, Morrison AC, Stitziel NO, et al. Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks. Am J Hum Genet 2014;94(2):223–32. https://doi.org/10.1016/j.ajhg.2014.01.009.

Franceschini G. Epidemiologic evidence for high-density lipoprotein cholesterol as a risk factor for coronary artery disease. Am J Cardiol 2001;88(12A):9N–13N. https://doi.org/10.1016/S0002-9149(01)02146-4.

Castelli WP, Garrison RJ, Wilson PW, Abbott RD, Kalousdian S, Kannel WB. Incidence of coronary heart disease and lipoprotein cholesterol levels: the Framingham Study. JAMA 1986;256(20):2835–8. https://doi.org/10.1001/jama.1986.03380200073024.

Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, Knoke JD, et al. High-density lipoprotein cholesterol and cardiovascular disease: four prospective American studies. Circulation 1989;79(1):8–15. https://doi.org/10.1161/01.CIR.79.1.8.

Fielding CJ, Fielding PE. Molecular physiology of reverse cholesterol transport. J Lipid Res 1995;36(2):211–28. https://doi.org/10.1016/S0022-2275(20)39898-9.

Feig JE, Shamir R, Fisher EA. Atheroprotective effects of HDL: beyond reverse cholesterol transport. Curr Drug Targets 2008;9(3):196–203. https://doi.org/10.2174/138945008783755557.

Rader DJ, Alexander ET, Weibel GL, Billheimer J, Rothblat GH. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res 2009;50(Suppl):S189–94. https://doi.org/10.1194/jlr.R800088-JLR200.

Feig JE, Hewing B, Smith JD, Hazen SL, Fisher EA. High-density lipoprotein and atherosclerosis regression: evidence from preclinical and clinical studies. Circ Res 2014;114(1):205–13. https://doi.org/10.1161/CIRCRESAHA.114.300760.

Briel M, Ferreira-Gonzalez I, You JJ, Karanicolas PJ, Akl EA, Wu P, et al. Association between change in high-density lipoprotein cholesterol and cardiovascular disease morbidity and mortality: systematic review and meta-regression analysis. BMJ 2009;338:b92. https://doi.org/10.1136/bmj.b92.

Thompson A, Di Angelantonio E, Sarwar N, Erqou S, Saleheen D, Dullaart RP, et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA 2008;299(23):2777–88. https://doi.org/10.1001/jama.299.23.2777.

Ordovas JM, Cupples LA, Corella D, Otvos JD, Osgood D, Martinez A, et al. Association of cholesteryl ester transfer protein-TaqIB polymorphism with variations in lipoprotein subclasses and coronary heart disease risk: the Framingham Study. Arterioscler Thromb Vasc Biol 2000;20(5):1323–9. https://doi.org/10.1161/01.ATV.20.5.1323.

Johannsen TH, Frikke-Schmidt R, Schou J, Nordestgaard BG, Tybjaerg-Hansen A. Genetic inhibition of CETP, ischemic vascular disease and mortality, and possible adverse effects. J Am Coll Cardiol 2012;60(20):2041–8. https://doi.org/10.1016/j.jacc.2012.07.045.

Zhong S, Sharp DS, Grove JS, Bruce C, Yano K, Curb JD, Tall AR. Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J Clin Invest 1996;97(12):2917–23. https://doi.org/10.1172/JCI118751.

Cannon CP, Shah S, Dansky HM, Davidson M, Brinton EA, Gotto AM, et al. Safety of anacetrapib in patients with or at high risk for coronary heart disease. N Engl J Med 2010;363(25):2406–15. https://doi.org/10.1056/NEJMoa1009744.

Fayad ZA, Mani V, Woodward M, Kallend D, Abt M, Burgess T, et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet 2011;378(9802):1547–59. https://doi.org/10.1016/S0140-6736(11)61383-4.

Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007;357(21):2109–22. https://doi.org/10.1056/NEJMoa0706628.

Group HTRC, Bowman L, Hopewell JC, Chen F, Wallendszus K, Stevens W, et al. Effects of anacetrapib in patients with atherosclerotic vascular disease. N Engl J Med 2017;377(13):1217–27. https://doi.org/10.1056/NEJMoa1706444.

Connelly PW, Hegele RA. Hepatic lipase deficiency. Crit Rev Clin Lab Sci 1998;35(6):547–72. https://doi.org/10.1080/10408369891234273.

Cohen JC, Vega GL, Grundy SM. Hepatic lipase: new insights from genetic and metabolic studies. Curr Opin Lipidol 1999;10(3):259–67. https://doi.org/10.1097/00041433-199906000-00008.

Ma K, Cilingiroglu M, Otvos JD, Ballantyne CM, Marian AJ, Chan L. Endothelial lipase is a major genetic determinant for high-density lipoprotein concentration, structure, and metabolism. Proc Natl Acad Sci U S A 2003;100(5):2748–53. https://doi.org/10.1073/pnas.0438039100.

Zanoni P, Khetarpal SA, Larach DB, Hancock-Cerutti WF, Millar JS, Cuchel M, et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science 2016;351(6278):1166–71. https://doi.org/10.1126/science.aad3517.

Pollin TI, Damcott CM, Shen H, Ott SH, Shelton J, Horenstein RB, et al. A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science 2008;322(5908):1702–5. https://doi.org/10.1126/science.1161524.

Sun H, Krauss RM, Chang JT, Teng BB. PCSK9 deficiency reduces atherosclerosis, apolipoprotein B secretion, and endothelial dysfunction. J Lipid Res 2018;59(2):207–23. https://doi.org/10.1194/jlr.M078360.

Denis M, Marcinkiewicz J, Zaid A, Gauthier D, Poirier S, Lazure C, et al. Gene inactivation of proprotein convertase subtilisin/kexin type 9 reduces atherosclerosis in mice. Circulation 2012;125(7):894–901. https://doi.org/10.1161/CIRCULATIONAHA.111.057406.

Chan JC, Piper DE, Cao Q, Liu D, King C, Wang W, et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci U S A 2009;106(24):9820–5. https://doi.org/10.1073/pnas.0903849106.

Duff CJ, Scott MJ, Kirby IT, Hutchinson SE, Martin SL, Hooper NM. Antibody-mediated disruption of the interaction between PCSK9 and the low-density lipoprotein receptor. Biochem J 2009;419(3):577–84. https://doi.org/10.1042/BJ20082407.

Hardy J, Niman S, Pereira E, Lewis T, Reid J, Choksi R, Goldfaden RF. A critical review of the efficacy and safety of inclisiran. Am J Cardiovasc Drugs 2021;21(6):629–42. https://doi.org/10.1007/s40256-021-00477-7.

Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med 2017;376(1):41–51. https://doi.org/10.1056/NEJMoa1609243.

Witztum JL, Gaudet D, Freedman SD, Alexander VJ, Digenio A, Williams KR, et al. Volanesorsen and triglyceride levels in familial chylomicronemia syndrome. N Engl J Med 2019;381(6):531–42. https://doi.org/10.1056/NEJMoa1715944.

Gouni-Berthold I, Alexander VJ, Yang Q, Hurh E, Steinhagen-Thiessen E, Moriarty PM, et al. Efficacy and safety of volanesorsen in patients with multifactorial chylomicronaemia (COMPASS): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol 2021;9(5):264–75. https://doi.org/10.1016/S2213-8587(21)00046-2.

Oral EA, Garg A, Tami J, Huang EA, O'Dea LSL, Schmidt H, et al. Assessment of efficacy and safety of volanesorsen for treatment of metabolic complications in patients with familial partial lipodystrophy: results of the BROADEN study. J Clin Lipidol 2022;16(6):833–49. https://doi.org/10.1016/j.jacl.2022.08.008.

Stroes ESG, Alexander VJ, Karwatowska-Prokopczuk E, Hegele RA, Arca M, Ballantyne CM, et al. Olezarsen, acute pancreatitis, and familial chylomicronemia syndrome. N Engl J Med 2024;390(19):1781–92. https://doi.org/10.1056/NEJMoa2400201.

European Medicines Agency (EMA). Tryngolza (olezarsen) 2025 [Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/tryngolza].

U.S. Food and Drug Administration. FDA approves drug to reduce triglycerides in adult patients with familial chylomicronemia syndrome 2024 [Available from: https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-drug-reduce-triglycerides-adult-patients-familial-chylomicronemia-syndrome].

Watts GF, Rosenson RS, Hegele RA, Goldberg IJ, Gallo A, Mertens A, et al. Plozasiran for managing persistent chylomicronemia and pancreatitis risk. N Engl J Med 2025;392(2):127–37. https://doi.org/10.1056/NEJMoa2409368.

Raal FJ, Rosenson RS, Reeskamp LF, Hovingh GK, Kastelein JJP, Rubba P, et al. Evinacumab for homozygous familial hypercholesterolemia. N Engl J Med 2020;383(8):711–20. https://doi.org/10.1056/NEJMoa2004215.

Rosenson RS, Burgess LJ, Ebenbichler CF, Baum SJ, Stroes ESG, Ali S, et al. Evinacumab in patients with refractory hypercholesterolemia. N Engl J Med 2020;383(24):2307–19. https://doi.org/10.1056/NEJMoa2031049.

Rosenson RS, Gaudet D, Ballantyne CM, Baum SJ, Bergeron J, Kershaw EE, et al. Evinacumab in severe hypertriglyceridemia with or without lipoprotein lipase pathway mutations: a phase 2 randomized trial. Nat Med 2023;29(3):729–37. https://doi.org/10.1038/s41591-023-02222-w.

Bergmark BA, Marston NA, Bramson CR, Curto M, Ramos V, Jevne A, et al. Effect of vupanorsen on non–high-density lipoprotein cholesterol levels in statin-treated patients with elevated cholesterol: TRANSLATE-TIMI 70. Circulation 2022;145(18):1377–86. https://doi.org/10.1161/CIRCULATIONAHA.122.059266.

Rosenson RS, Gaudet D, Hegele RA, Ballantyne CM, Nicholls SJ, Lucas KJ, et al. Zodasiran, an RNAi therapeutic targeting ANGPTL3, for mixed hyperlipidemia. N Engl J Med 2024;391(10):913–25. https://doi.org/10.1056/NEJMoa2404147.

Hoekstra M, Van Eck M. Gene editing for the treatment of hypercholesterolemia. Curr Atheroscler Rep 2024;26(5):139–46. https://doi.org/10.1007/s11883-024-01198-3.

Kasiewicz LN, Biswas S, Beach A, Ren H, Dutta C, Mazzola AM, et al. GalNAc–lipid nanoparticles enable non-LDLR dependent hepatic delivery of a CRISPR base editing therapy. Nat Commun 2023;14(1):2776. https://doi.org/10.1038/s41467-023-37465-1.

Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015;520(7546):186–91. https://doi.org/10.1038/nature14299.

Ding Q, Strong A, Patel KM, Ng SL, Gosis BS, Regan SN, et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res 2014;115(5):488–92. https://doi.org/10.1161/CIRCRESAHA.115.304351.

Chadwick AC, Wang X, Musunuru K. In vivo base editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) as a therapeutic alternative to genome editing. Arterioscler Thromb Vasc Biol 2017;37(9):1741–7. https://doi.org/10.1161/ATVBAHA.117.309881.

Jiang C, Mei M, Li B, Zhu X, Zu W, Tian Y, et al. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and PCSK9 in vivo. Cell Res 2017;27(3):440–3. https://doi.org/10.1038/cr.2017.16.

Zhang L, Wang L, Xie Y, Wang P, Deng S, Qin A, et al. Triple-targeting delivery of CRISPR/Cas9 to reduce the risk of cardiovascular diseases. Angew Chem Int Ed Engl 2019;58(36):12404–8. https://doi.org/10.1002/anie.201903618.

Zhao H, Li Y, He L, Pu W, Yu W, Li Y, et al. In vivo AAV-CRISPR/Cas9-mediated gene editing ameliorates atherosclerosis in familial hypercholesterolemia. Circulation 2020;141(1):67–79. https://doi.org/10.1161/CIRCULATIONAHA.119.042476.

Wang L, Smith J, Breton C, Clark P, Zhang J, Ying L, et al. Meganuclease targeting of PCSK9 in macaque liver leads to stable reduction in serum cholesterol. Nat Biotechnol 2018;36(8):717–25. https://doi.org/10.1038/nbt.4182.

Rothgangl T, Dennis MK, Lin PJC, Oka R, Witzigmann D, Villiger L, et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat Biotechnol 2021;39(8):949–57. https://doi.org/10.1038/s41587-021-00933-4.

Musunuru K, Chadwick AC, Mizoguchi T, Garcia SP, DeNizio JE, Reiss CW, et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 2021;593(7859):429–34. https://doi.org/10.1038/s41586-021-03534-y.

Chadwick AC, Evitt NH, Lv W, Musunuru K. Reduced blood lipid levels with in vivo CRISPR-Cas9 base editing of ANGPTL3. Circulation 2018;137(9):975–7. https://doi.org/10.1161/CIRCULATIONAHA.117.031335.

Laffin LJ, Nicholls SJ, Scott RS, Clifton PM, Baker J, Sarraju A, et al. Phase 1 trial of CRISPR-Cas9 gene editing targeting ANGPTL3. N Engl J Med 2025;393(21):2119–30. https://doi.org/10.1056/NEJMoa2511778.

Karwatowska-Prokopczuk E, Tardif JC, Gaudet D, Ballantyne CM, Shapiro MD, Moriarty PM, et al. Effect of olezarsen targeting APOC-III on lipoprotein size and particle number measured by NMR in patients with hypertriglyceridemia. J Clin Lipidol 2022;16(5):617–25. https://doi.org/10.1016/j.jacl.2022.06.005.

Gaudet D, Methot J, Dery S, Brisson D, Essiembre C, Tremblay G, et al. Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther 2013;20(4):361–9. https://doi.org/10.1038/gt.2012.43.

Genetic determinants of lipid metabolism in cardioprotection: From mechanisms to clinical practice

Downloads

Published

04-12-2025

How to Cite

1.
Genetic determinants of lipid metabolism in cardioprotection: From mechanisms to clinical practice. Biomol Biomed [Internet]. 2025 Dec. 4 [cited 2025 Dec. 28];. Available from: https://www.bjbms.org/ojs/index.php/bjbms/article/view/13176